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Abstract In this paper, we combine methods used in penalized generalized empirical likelihood
(GEL) frameworks with feature extraction techniques that enable projecting textual data into
numerical spaces. We discuss some recent techniques used in GEL when the number of features
gets very large in comparison to the sample size. We relate this approach to the Maximum
Entropy (MaxEnt) principle used in several tasks of Natural Language Processing (NLP), in
particular in POS-Tagging. Since the features belong to a large dimensional space, we propose
a penalization method based on the dual representation of the original problem: this yields to
an explicit approximation of conditional probabilities of tags given the context. This method
considerably reduces computational costs. As a byproduct, for different GEL methods, we
obtain the corresponding POS-Tagging classifiers generalizing the MaxEnt method.

1 Introduction

1.1 Some references on Generalized Empirical Likelihood

Empirical likelihood (EL) was first introduced by Thomas and Grunkemeier (1975) [45] to
provide improved confidence intervals using the Kaplan-Meier estimator in survival analysis.
Extensions of this approach to survey sampling were explored by Hartley and Rao (1968) [18].
Owen (1988) [35] developed a general framework for empirical likelihood in nonparametric
inference. Between 1988 and 1990, Owen further generalized Wilk’s theorem (1938) [46],
demonstrating that the quantity−2 log(R) asymptotically follows a χ2 distribution in a nonpara-
metric context, withR representing the likelihood ratio (see Owen (1988) [35], Owen et al. (1990)
[34]).

The empirical log-likelihood ratio can be interpreted as the minimization of the Kullback
divergence between the empirical distribution Pn of the observed data and a probability measure
Q dominated by Pn, subject to linear or nonlinear constraints defined by the statistical model.
Other pseudo-metrics besides the Kullback divergence have been considered by Owen et al.
(1990) [34] and several other authors. For example, choosing relative entropy has given rise to
”Entropy econometrics” in econometrics (Golan et al. (1996) [16]). Related work appears in
probabilistic literature concerning divergences and entropy methods (see Leonard (2001) [25,
26, 27], Gamboa and Gassiat (1996) [15]). Generalizations of empirical likelihood based on the
Cressie-Read discrepancy have also been developed. These generalizations, called ”generalized
empirical likelihood,” have been studied in econometrics by Newey and Smith (2004) [32],
although they typically lose certain desirable likelihood properties, such as Bartlett-correctability.
Bertail et al. (2014) [4] demonstrated that Owen’s empirical likelihood approach for estimating
means can be extended under mild conditions to any regular convex statistical divergence or
φ∗-discrepancy (where φ∗ is a regular convex function), and for general Hadamard-differentiable
functionals (see Bertail et al. (2007) [6] and Bertail et al. (2015) [5]). They call this method
”empirical energy minimizers” by analogy to the theoretical probabilistic literature on the

1



subject (see Leonard (2001) [25, 26, 27] and the references therein).

1.2 POS-Tagging

The main purpose of this paper is to propose some new classification methods which are time
and computationally inexpensive in the framework of Natural Language Processing (NLP). We
recall a few notions of POS-Tagging.
POS-Tagging assigns a part of speech (grammatical category, gender, or number) to each word
in a sentence. Given an input (e.g., a sentence and a tagset), the goal is to predict the most
suitable tag for each word using computational methods. A more detailed presentation with
examples is provided in Section 3.
In this framework, the generalized empirical method is closely related to the maximum entropy
(MaxEnt) method used in POS-Tagging, through the concept of ”dual likelihood” introduced
by Mykland (1995) [31]. Specifically, selecting a particular divergence naturally leads to a
dual likelihood function. In the special case of entropy, this dual likelihood matches precisely
the likelihood function used by the MaxEnt method described later. This connection suggests
possible extensions: first, the creation of new types of likelihood functions, and second, the
development of procedures that can better handle high-dimensional problems common in text
analysis.

2 Generalized empirical likelihood and MaxEnt models

2.1 A brief overview of empirical likelihood

Let Z1, ..., Zn be independent identically distributed variables following ⇝ P ∈ P (where P is
a convex set of probability), with Zi taking values on a space X defined on a probability space
(X ,A,P). We are interested in constructing a confidence region for the functional parameter
θ = T (P) defined on ζ, taking values in Rd. In the following, we define Pn the empirical
probability measure as follows

Pn =
1

n

n∑
i=1

δZi .

Owen (1990) [34] has shown that Pn is the NPMLE of P (Non Parametric Maximum

Likelihood Estimate). Thus the NPMLE of T (P) is then its emprical counterpart θ̂n = T (Pn),
called a statistical functional. Many statisticians (since Von Mises, see Serfling (1980) [42]) have

been interested in deriving the asymptotic properties of θ̂n using differentiability assumptions
on T via Taylor expansion (the delta method).

The empirical likelihood ratio evaluated at θ is defined by

Rn (θ) = sup
Qn∈Pn

{
n∏

i=1

dQn

dPn
(Zi) ,T (Qn) = θ

}
,

where

Pn =

{
Qn =

n∑
i=1

pi,nδZi
, pi,n ≥ 0,

n∑
i=1

pi,n = 1

}
.

The log-likelihood ratio is thus

log (Rn (θ)) = sup
(pi,n)i≤n

{
n∑

i=1

log

(
pi,n
1
n

)
,T

(
n∑

i=1

pi,nδZi

)
= θ,

n∑
i=1

pi,n = 1

}
.
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A better way to see this problem from a probabilistic point of view is to consider the formula
above as the minimization of the Kullback distance IK between Qn and Pn, where

IK (Q,P) =

{
−
∫
log(dQdP )dP if Q ≪ P

∞ else

under the two constraints, on the parameter and the probabilities pi,n.
For instance, T(P) may be the unique solution of some estimating equations EPg(Z,T(P)) =

0 (see Qin and Lawless (1994) [38]) where for each fixed parameter T(P), g is a measurable
function defined from X to Rd, d ≥ 1. These equations will also include marginal constraints
(that is constraints independent of the parameter T(P) incorporating some knowledge of the
data: see an application on large datasets of this kind of idea in Crepet et al. (2009) [13]). In
this case, the constraint becomes EQn

g(Z, θ) = 0 =
∑

pi,ng(Zi, θ) and the empirical likelihood
boils down to the convex maximization program

Rn(θ) = sup
pi,n,i=1,...,n

{
Πn

i=1pi,n

1/nn under
∑n

i=1 pi,ng(Zi, θ) = 0∑n
i=1 pi,n = 1, pi,n ≥ 0

}
.

Some standard results in convex optimization theory give conditions for this problem to have
a solution and also allow to obtain a dual representation of this problem. This is precisely the
dual representation that generates the MaxEnt model used in NLP as explained below.

2.2 A general view of empirical likelihood

Consider a measured space (X ,A,M) where M is a space of signed measures. Working on a
space of signed measures will be essential for applications to ensure the existence of solutions of
the original optimization program. Let g be a measurable function defined from X to Rd, d ≥ 1.
For any measure m ∈ M, we write mg =

∫
gdm . In the following, we consider φ, a convex

function whose support dom(φ) = {x ∈ R, φ(x) < ∞}, is assumed to be non-void (that is φ is
proper). We denote respectively inf {dom(φ)} and sup {dom(φ)}, the extremes of this support.
For every convex function φ, its convex dual or Fenchel-Legendre transform is given by

φ∗(y) = sup
x∈R

{xy − φ(x)}, ∀ y ∈ R.

Recall that φ∗ is then a semi-continuous inferior (s.c.i.) convex function. We define by φ(i) the
derivative of order i of φ when it exists. From now on, we will assume the following assumptions
for the function φ.

A1 φ is strictly convex and dom(φ) contains a neighborhood of 0 ;

A2 φ is twice differentiable on a neighborhood of 0 ;

A3 (renormalization) Assume φ(0) = 0 and φ(1)(0) = 0, φ(2)(0) = 1, which implies that φ
has an unique minimum at zero and φ(x) behaves like x2/2 at 0 ; For the divergences of
interest (see Table 3 for common divergences with their domain), it is always possible to
renormalize the function φ in such a way.

A4 φ is differentiable on dom(φ), that is to say, differentiable on int{dom(φ)}, with right
and left limits on the respective endpoints of the support of dom(φ), where int{.} is the
topological interior.

A5 φ is twice differentiable on dom(φ)∩R+ and, on this domain, the second order derivative
of φ is bounded from below by a constant φmin > 0.
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Let φ satisfies the assumptions A1, A2, A3. Then, the Fenchel dual transform φ∗ of φ
also satisfies these assumptions. The φ∗-discrepancy Iφ∗ between Q and P, where Q is a signed
measure and P a positive measure, is defined as follows

Iφ∗(Q,P) =
{ ∫

X φ∗ (dQ
dP − 1

)
dP if Q ≪ P,

+∞ else.
(1)

For details on φ∗-discrepancies or divergences and some historical comments, see Liese and
Vajda (1987) [28], Leonard (2001) [25, 26, 27].

Our primary interest in φ∗-discrepancies comes from the following duality representation,
derived from results by Borwein and Lewis (1991) [7] on convex integral functionals (see also
Rockafellar (1968) [41]). The following result, presented by Bertail et al.(2015) in [6], is a
simplified version of the duality result established by Borwein and Lewis (1991) [7]. Additional
dual representations and detailed topological analyses of the problem are provided by Keziou
(2003) [22] and Broniatowski and Keziou (2006) [10].In the following we denote by infX

dT
dP and

supX
dT
dP respectively the lower point and the upper point of the support of the corresponding

Radon-Nikodym density.

Proposition 2.1. (see Bertail et al. (2015) [5]) Let P ∈ M be a probability measure with
finite support, and let f be a measurable function on (X ,A,M). Consider a convex function φ
satisfying assumptions A1–A3. Suppose the following qualification condition holds:

Qual(P) :

∃T ∈ M, Tg(., θ) = T0 and

inf {dom(φ∗)} < infX
dT
dP ≤ supX

dT
dP < sup {dom(φ∗)} ,

then the following dual equality holds:

inf
Q∈M

{Iφ∗(Q,P)| (Q− P)g(., θ) = T0} = sup
λ∈Rd

{
λ⊤T0 − Pφ(λ⊤g(., θ))

}
. (2)

s Moreover, if φ satisfies condition A4, then the supremum on the right hand side of (2) is
reached at some point λ∗ and the infimum on the left hand side at Q∗ is given by

Q∗ = (1 + φ(1)(λ∗⊤g(., θ)))P.

In addition, similar results hold when the number of constraints becomes large or even
infinite; see Leonard (2001) [25, 26, 27] and Gamboa and Gassiat (1996) [15].

The same kind of results also holds when the number of constraints goes to infinity or even
is infinite, see Leonard (2001) [25, 26, 27] and Broniatowki and Keziou (2012) [11] for some
applications to a continuum of moment constraints.

Let Z,Z1, ...Zn be i.i.d. r.v.’s defined on X with common probability measure P ∈M. Assume
in addition that g(Z, θ) is such that Σd = E

(
g(Z, θ)g(Z, θ)⊤

)
exists and is positive definite. This

rules out the so-called over-identified case (in the econometric literature).
For a given φ, we define, by analogy to the empirical likelihood problem, the quantity

βn(θ) = n inf
Q∈Mn

{Iφ∗(Q,Pn)} with Mn = {Q ∈ M | Q ≪ Pn, EQg(Z, θ) = 0} .

For Q in Mn, the constraints can be rewritten as (Q − Pn)g(., θ) = −Png(., θ). Using the
result of Equation (2) or the results of Broniatowki and Keziou (2006) [10], we get the dual
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representation

βn(θ) := n inf
Q∈Mn

{Iφ∗(Q,Pn), (Q− Pn)g(., θ) = −Png(., θ)}

= n sup
λ∈Rd

Pn

(
− λ⊤g(., θ)− φ(λ⊤g(., θ))

)
. (3)

Notice that −x − φ(x) is a strictly concave function and that the function λ → λ⊤g is also
concave. The parameter λ can be simply interpreted as the Kuhn-Tucker coefficient associated
with the original optimization problem. From this representation of βn(θ), we can now derive
the usual properties of the empirical likelihood and its generalization. In the following, we will
also use the notations

gn = Png (., θ) =
1

n

n∑
i=1

g(Zi, θ) ; S
2
n =

1

n

n∑
i=1

g(Zi, θ)g(Zi, θ)
⊤ and S−2

n = (S2
n)

−1.

Since the dimension d is fixed, S2
n is always invertible for n large enough when Σd is positive

definite.
The following results give an explicit approximation of the optimal Kuhn and Tucker coefficient

λ∗
n and recall the standard asymptotic distribution of βn(θ), already obtained in Owen (2001)

[36] and Harari (2006) [17]. Our main contribution here is an explicit control of the Kuhn-Tucker
coefficient, which will be useful for constructing new, quick classifiers.

Theorem 2.1. Under the assumptions A1–A5. Assuming that Σd is positive definite, we have

λ∗
n = −S−2

n ḡn + oP

(
n−1/2

)
Moreover, we have

2βn(θ)
D−−−−→

n→∞
χ2(d).

In Table 3, we review the form of the weights obtained at the optimal value of the Kuhn &
Tucker coefficients for different φ-divergences.

2.3 Penalizing the dual likelihood in large dimension

The preceding results and the asymptotic validity of generalized empirical likelihood essentially
hold when d the number of constraints (equal for us to the dimension of the parameter θ) is fixed
and small compared to n. McKeague and von Keilegom (2009) [19] have studied the validity of
empirical likelihood when d depends on n and such that d << n1/3. They show that empirical
likelihood still works: this can be explained by the fact that in that case, the empirical variance
automatically computed by the internal optimization program is still a convergent estimator of
the true variance. However, as noticed by several authors, the method fails when the number of
constraints tends to be too big, in particular when it is of the same size as n, see Lahiri (2012)
[23] and Bartolucci (2007) [1].

Several propositions have emerged to treat large dimension problems with generalized empirical
likelihood. We may classify them into three classes (or combinations of the three methods).

(i) Enlarge-the-margin methods : by this, we mean that instead of the original empirical
likelihood problem, allow for some flexibility or some pertubations of the original constraints.
This can be done either by adding one or several points to the data which do not have exactly
the correct mean (see Chen, Variyath and Abraham (2008), Emerson and Owen (2009)). Or this
can be done by replacing the original constraints by some inequality constraints with respect
to some norm ∥.∥R defined by ∥x∥R = x⊤Rx, where R is possibly random allowing for some
flexibility in the constraints. This leads to a relaxed empirical likelihood version
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Rpen
n (θ) = sup

(pi,n)i≤n

{
nn
∏n

i=1 pi,n under
∥∥∑n

i=1 pi,ng(Zi, θ)
∥∥
R
≤ δn∑n

i=1 pi,n = 1, pi,n ≥ 0

}
(4)

where δn is a margin to be calibrated (possibly depending on the data).

(ii) Penalize the empirical likelihood either on the primal form or the dual form. It is
well known in the convex literature that program (4) may also be rewritten

log(Rpen
n (θ)) = sup

pi,n,i=1,...,n

{ ∑n
i=1 log(pi,n)− Cn(δn)||

∑n
i=1 pi,ng(Zi, θ)||R∑n

i=1 pi,n = 1, pi,n ≥ 0

}
which may be interpreted as a penalized version of the original program. Such penalizations
have been studied in Bartollucci (2007) [1] and Lahiri and Mukhopadhyay (2011) [23] when
g(Zi, θ) = Zi − θ, Zi = (Zi,1, ...Zi,d)

⊤ ∈ Rd. The proposition of Bartolluci (2007) corresponds

to the choice R = Ŝ−2
n and ∥x∥R = x⊤Ŝ−2

n x, Cn(h) = n/2h2, and Ŝ2
n is the sample covariance

matrix

Ŝ2
n =

1

n

n∑
i=1

(Zi − Zn)(Zi − Zn)
⊤, with Zn =

1

n

n∑
i=1

Zi.

Notice that this proposition may cause problems when d is bigger than n, since in that case
the sample covariance matrix is not full rank and thus not invertible. The proposition of Lahiri
and Mukhopadhyay (2011) [23] in a more general dependent framework (the (Zi)i=1,...,n may
be weak mixing or with long range dependence) corresponds to

R = diag(σ̂−2
j )j=1,...,d,

with C(h) = h, where we use

σ̂2
j =

1

n

n∑
i=1

(Zi,j − Z̄j,n)
2

the marginal empirical variances and Zi,j and Z̄j,n the jth component of Zi and Z̄n respectively.

Notice that for a very large dimension, this proposal is expected to work better since Ŝ2
n is

singular if d > n.
Another proposition is to penalize the empirical likelihood in its dual form (see Mykland

[31]) for an introduction to dual likelihood. Penalized version in the dual form has been recently
studied by Otsu (2007) [33], and Chang et al. (2018) [12]. The most important results have been
obtained by Shi (2016) [43] who proved that, for empirical likelihood with a correct penalization,
the number of constraints may be as large as o(exp(n1/3)).

For generalized empirical likelihood, this corresponds to studying a penalized version of the
dual program of the form

γn(θ, λ) = Pn

(
− λ′g(., θ)− φ(λ′g(., θ))

)
− 1

2
||λ||2R, (5)

and the corresponding optimisation problem

γ∗
n(θ) = sup

λ∈Rd

(γn(θ, λ)), (6)

which is clearly linked to the proposition of Bartolucci (2007) [1] and Lahiri and Mukhopadhyay
(2012) [23] by duality consideration. We will not investigate here the relations between the
different dual formulations : however this would be clearly of interest in particular when one
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uses the ℓ1 or the ℓ∞ norms or a combination of these norms with ℓ2 (elastic net) instead of a
simpler ℓ2 norm.

When R = ρn.I, for some positive constant ρn, note that in the χ2 case the dual problem
(5) and for the choice of à ℓ2 penalization, the optimization program becomes

γ∗
n(θ) = sup

λ∈Rd

Pn

{
−λ

⊤
g(., θ)− (λ⊤g(., θ))2

2
− ρn

2
λ⊤λ

}
and the solution of this program is simply the regularized Hotteling statistics

1

2
Png(., θ)

⊤ [Png(., θ)g(., θ)
⊤ + ρnI

]−1 Png(., θ)

which is a regularized form of the T 2 Hotelling statistics (with no centering).
Consider µ = [µj ]{j=1,...,d} the eigenvalues of the empirical covariance matrix S2

n = Png(., θ)g(., θ)
⊤.

Define the vector
µ

µ+ ρn
=

{
µj

µj + ρn

}
j=1,...,d

and the so-called effective dimensions∥∥∥∥ µ

µ+ ρn

∥∥∥∥
1

=

d∑
j=1

∣∣∣∣ µj

µj + ρn

∣∣∣∣ and ∥∥∥∥ µ

µ+ ρn

∥∥∥∥
2

=

√√√√ d∑
j=1

(
µj

µj + ρn

)2

.

The following result is a penalized version of Theorem 2.1 when the dimension d ≥ n. It shows
that a standardized version of the penalized generalized empirical likelihood is asymptotically
normal. See also Peng and Schick (2018) [37] for similar results for empirical likelihood in a
slightly different large dimension framework. We also give an approximation of the optimal
value of λ, which will prove useful to construct our predictors for POS-Tagging.

Theorem 2.2. Under the assumptions A1–A5. Assume that Σd is positive definite and that
its largest eigenvalue is bounded, then we have

λ∗
n = −

(
S2
n + ρnI

)−1
ḡn + oP

(
n−1/2ρn

)
Moreover, if we have

∥∥∥ µ
µ+ρn

∥∥∥
2
−−−−→
n→∞

∞ as d > n goes to ∞, then we have

2γ∗
n(θ)−

∥∥∥ µ
µ+ρn

∥∥∥
1√

2
∥∥∥ µ
µ+ρn

∥∥∥2
2

D−−−−→
n→∞

N (0, 1).

When the dimension d << n, Bertail et al. (2008) [3] have shown that one can choose
ρn = 0 and can get some exact exponential bounds for this quantity. Issouani et al. (2024)
[21] investigate conditions to obtain exponential bounds in this large dimension framework
by choosing an adequate value for the penalty ρn, assuming few moment conditions on g.
The asymptotic behavior of the χ2 or GMM (Generalized Moment Method) case when there
is an infinite number (or a continuum) of constraints has been treated by several authors in
the econometric literature, see for instance Carasco and Florens (2000), using some Tikhonov
regularization of the operator S2

n. The condition on the maximum eigenvalue of Σd simply means
that the components of the function g can not be too strongly correlated and the condition on
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∥∥∥ µ
µ+ρn

∥∥∥
2
is automatically satisfied when the penalization is small.

In the following section, we will apply our results to the framework of NLP. We will focus
essentially on the simpler case of POS-Tagging. Still, the same kind of ideas may be applied in
more complex classification tasks such as text (complex/simple) classification and simplification
(see [20]).

3 Application to POS-Tagging

POS-Tagging assigns each word in a sentence its part of speech, such as grammatical category,
gender, or number. Given an input (e.g., a sentence and a tagset), the goal is to predict the
best tag for each word using a computational tool. The main challenge is to resolve ambiguities
by selecting the correct tag based on context. This task is particularly suited for evaluating
prediction accuracy, as it allows straightforward verification of correct tags. Tagging is more
efficient with methods that take into account the local context (see Subsection 2.1 of Issouani’s
phD thesis [20]).

3.1 A brief overview of POS-Tagging

Advantages of POS-Tagging POS-Tagging is a simple task (often linear in processing time)
with many applications. As Feldman (2010) [14] noted, it is crucial for linguistic research,
enabling the analysis of constructions in large corpora [30]. POS information can also serve
as a basis for syntactic parsing by providing grammatical context, serving as a preprocessor to
speed up parsing. Additionally, it supports word-sense disambiguation, text production, and
morphological generation by modeling POS sequences. This knowledge is essential for tasks like
extracting key words (e.g., verbs) for text summarization or simplification.

Tagsets and Examples There exists several tagsets such as Penn Treebank, Brown and
British national corpora. The POS-tags used below are taken from the tagset Penn Treebank
Corpus, proposed at the University of Pennsylvania that includes 36 tags, see Figure 3.1. Recall
that there is also a collection called universal tagset, which just says if the word is a pron,
noun, verb, det, adj, adv or punct. So it contains 7 tags in total.

CC Coord. conjunction
CD Cardinal digit
DT Determiner
EX Existential there
FW Foreign word
IN Prep./Subord. conj.
JJ Adjective
JJR Adj., comparative
JJS Adj., superlative
LS List marker
MD Modal
NN Noun, singular

NNS Noun, plural
NNP Proper noun, sing.
NNPS Proper noun, plur.
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Poss. pronoun
RB Adverb
RBR Adj., comparative
RBS Adj., superlative
RP Particle
TO to

UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund
VBN Verb, past participle
VBP Verb, present sing.
VBZ Verb, 3rd sing. pres.
WDT wh-determiner
WP wh-pronoun
WP$ Poss. wh-pronoun
WRB wh-adverb

Figure 1: PennTreebank tagset. See A.Taylor & al. (2003) [44]

POS-Tagging examples Here are two examples of pos-tagged sentences:

”I saw a girl with a telescope.” ; ”The grand jury commented on a number of other topics.”
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I saw a girl with a telescope .
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

PRP VBD DT NN IN DT NN .

The grand jury commented on a number of other topics .
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
DT JJ NN VBD IN DT NN IN JJ NNS .

Existing approaches There are now numerous systems for the automatic assignment of
parts of speech tagging, employing many different machine learning methods. Among recent
top-performing methods are Hidden Markov Models (Brants (2000) [8]), maximum entropy
approaches (Ratnaparkhi et al. (1996) [40]), and transformation-based learning (Brill (1994)
[9]). An overview of these and other approaches can be found in Manning and Schoetze (1999)
[29] (Chapter 10). Notice that Ratnaparkhi’s thesis (1998) [39] contains different NLP tasks
like sentence boundary detection (tokenization), POS-Tagging, and parsing where he used ideas
similar to the maximum entropy method.

Mathematical modeling POS-Tagging task can be considered as a classification problem,
where the goal is to estimate a function h : X → Y which maps an object x ∈ X , where X is
some abstract measurable space (texts, sentence, sequence of words) equipped with a σ-algebra,
to its correct class y ∈ Y . That is to say, we consider a classifier of the form{

h : X −→ Y
x 7−→ y.

3.2 Penalized MaxEnt method applied to POS-Tagging

In the following, we apply the ideas of generalized empirical likelihood developed in section 2.2
to the POS-Tagging problem described in 3.1.

Let us remember that we have at our disposal a corpus C = {(wi, ti)}i=1...n. We transform
C to a new dataset D = {(xi, ti)}i=1...n where xi’s are the contexts of wi’s. Each xi represents
a new vector containing the current word wi and the surrounding information (including words,
punctuation, affixes of the current word, etc.). We intend to estimate p(ti|xi) using the generalized
empirical likelihood framework (Bertail (2006) [2]) equipped with relative entropy divergence.
For two p.d. p = (p1, ..., pn) and q = (q1, ..., qn), recall that DE is given by :

DE (p,q) =

n∑
i=1

pi log

(
pi
qi

)
Features are functions f that encode the local textual information: they take as input a pair,

the context and its tag, and return a high-dimensional binary vector f(xi, ti). We will show
in Subsection 4.1, how this feature functions are constructed practically according to a given
dictionary. Now, assume that we observe n i.i.d. random vectors Zi = f(xi, ti) having some
distribution P. In this framework, the multidimensional function g(Z, θ) used before is given by
the vector f(t, x)− θ = (fj(t, x)− θj)j=1...,d, where θ = (θj)j=1,...,d is the expectation of f(x, t).

As before we assume that the variance V (Zi) exists.

3.2.1 Relative entropy and MaxEnt problem (d < n)

It is easy to check that the dual of the initial minimization problem is given by
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sup
λ∈Rd

{
1− 1

n

n∑
i=1

eλ
⊤(f(xi,ti)−θ)

}
. (7)

From these, we see that the optimal weights p∗i = p∗(xi, ti), i = 1, ..., n satisfy

p∗ (xi) p
∗(ti|xi) =

1

n
eλ

∗⊤(f(xi,ti)−θ).

Since
T∑

k=1

p∗ (tk | xi) = 1, it follows that

p∗ (ti|xi) =
exp(λ∗⊤θ) · exp(−λ∗⊤f (xi, ti)))

exp(λ∗⊤θ)·
T∑

k=1

exp(−λ∗⊤f (xi, tk)))

.

This justifies the use of formula (7) in the MaxEnt program.
Finally, we obtain

p∗ (ti | xi) =
e−λ∗⊤f(xi,ti)

T∑
k=1

e−λ∗⊤f(xi,tk)

=
e
−

K∑
j=1

λ∗
j ·fj(xi,ti)

T∑
k=1

e
−

K∑
j=1

λ∗
j ·fj(xi,tk)

(8)

This shows that minimizing the Relative entropy divergence between the desired distribution
and the multinomial distribution gives the same solution as the one obtained when maximizing
the likelihood of a log-linear model based on the features.

Moreover, we get the predictive probability of ti given x using the estimate

p∗ (ti|x) =
e−λ∗⊤f(x,ti)∑

ti∈T
e−λ∗⊤f(x,ti)

We know from the duality results exposed before that the optimal value of λ is asymptotically
given by λ∗ = −S−2

n (f̄n − θ) up to o(n−1/2). Unfortunately, this quantity depends on θ. It may
be estimated in two different ways according to the context we are interested in.

• Method 1 : Either estimate θ by estimating the log-linear model considered in the MaxEnt
method or by using the method proposed in Quin and Lawless(1994) [38] that is, find the

value of θ̂ which realizes

inf
θ∈Rd

sup
λ∈Rd

{
1− 1

n

n∑
i=1

eλ
⊤(f(xi,ti)−θ)

}
(9)

This will yield asymptotically λ̂∗ = −Ŝ−2
n (f̄n − θ̂) with

Ŝ2
n =

1

n

n∑
i

(
f(x, ti)− θ̂

)(
f(x, ti)− θ̂

)⊤
.

This yields an asymptotic expression for the conditional probability given by

p̂ (ti|x) =
e−(f̄n−θ̂)⊤Ŝ−2

n f(x,ti)∑
tk∈T

e−(f̄n−θ̂)⊤Ŝ−2
n f(x,tk)

.

The advantage of this expression is that it does not require the computational optimization
used for the log-linear model proposed in the MaxEnt method.
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• Method 2 : In some situations, for a given context, we can observe another corpus and
compute an estimator θ̃ of θ. In that case, we can use directly this estimator to get the
predictive probability

p̃ (ti|x) =
e−(f̄n−θ̃)⊤S̃−2

n f(x,ti)∑
tk∈T

e−(f̄n−θ̃)⊤S̃−2
n f(x,tk)

with

S̃2
n =

1

n

n∑
i

(
f(x, ti)− θ̃

)(
f(x, ti)− θ̃

)⊤
.

Since the number of tags is relatively limited in POS tagging, such computation is almost
immediate.

3.3 The penalized version of MaxEnt (d ≥ n)

A natural question is to propose a method adapted to large dimension constraints in the
framework of NLP. For this, consider the problem of generalized empirical likelihood with an
L2 penalization.

The penalized empirical divergence in the relative entropy case is

γn(θ, λ) = Pn

(
− λ⊤ (f (x, t)− θ)− φ(λ⊤ (f (x, t)− θ))

)
− 1

2
||λ||2R.

and becomes

γn(θ, λ) = 1 +
1

n

n∑
i=1

(
− exp(λ⊤ (f (xi, ti)− θ))− 1

2
||λ||2R

)
.

Notice that when R = ρnI , then this quantity becomes asymptotically for λ close to 0 (as
expected),

γn(θ, λ) ≈
1

n

n∑
i=1

(
−λ⊤ (f (xi, ti)− θ))− 1

2
λ⊤(S2

n + ρnI)λ

)
whose maximum is attained at

λ∗
n = −(S2

n + ρnI)
−1 1

n

n∑
i=1

(f (xi, ti)− θ) = −(S2
n + ρnI)

−1Pn(f − θ)

yielding the value at the optimum

1

2
Pn(f − θ)⊤(Pn(f − θ)(f − θ)⊤ + ρnI)

−1Pn(f − θ),

as in χ2 case (for which the expression was exact).
In the penalized case, we see that the optimal weights depend on θ and are given by

p̂ (ti|x) =
e−(f̄n−θ)⊤(S2

n+ρnId)
−2

(f(x,ti)−θ)∑
tk∈T

e−(f̄n−θ)⊤(S2
n+ρnId)

−2(f(x,tk)−θ)
,

where we recall that S2
n = 1

n

∑n
i (f(xi, ti)− θ) (f(xi, ti)− θ)

⊤
and f̄n = 1

n

∑n
i=1 f(xi, ti).

As explained in Paragraph 3.2.1, it is possible to have an estimator of θ based on another
corpus and to obtain a plug-in version of this quantity. Thus, the problem will essentially be to
have an adequate value for the penalization parameter.
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4 Practical implementation of Penalized GEL on the Penn-
Treebank corpus

4.1 Preparation of the database

In the following, we will build a POS-tagger, which is based on a penalized maximum entropy
principle, that takes as input a sentence, and assigns a grammatical class (or POS-tag) to each
word in this sentence, using the ”penalization” ideas developed above. To accomplish this, we
use the Penn-Treebank corpus, which uses a tagset containing a total of 46 tags, 36 grammatical
tags (verbs, nouns, prepositions, etc.), and 10 punctuation tags (comma, closing brackets, etc.).
More precisely, the version of the corpus that we are using, is the one included in the Python nltk
package. It contains 3914 sentences, which represent 100676 tokens (here single words) or 12408
tokens without repetitions. We extract randomly (several times) a sample of size N = 10000
from the 100676 initial tokens for memory capacity reasons.

To prepare the database, the first step is to construct two functions:

(1) a context function that takes a tagged sentence in the form of (ti, wi) pairs (tag, word),
i = 1 to the size of the sentence (in term of number of words), as input and returns the same
sentence but in the form of (ti, xi) pairs (tag, context), where x is a context vector that contains
information about the word w as well as its neighboring words within the sentence where it was
observed. The information we have retained includes the two words preceding the central word
w, the two words following w, whether w is the beginning or end of a sentence, and whether it
is a number.

The following table 1 provides an example of transforming the following tagged sentence into
(tag, context) pairs instead of (tag, word) pairs.

Pierre Vinken , 61 years old , will join the board
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

NNP NNP , CD NNS JJ , MD VB DT NN

as a nonexecutive director Nov. 29 .
↓ ↓ ↓ ↓ ↓ ↓ ↓
IN DT JJ NN NNP CD .

Tag (ti)
Context (xi)

wi−2 wi−1 wi wi+1 wi+2 Digit Capital w0 w∞

NNP 0 0 Pierre Vinken , 0 1 1 0
NNP 0 Pierre Vinken , 61 0 1 0 0
, Pierre Vinken , 61 years 0 0 0 0
...

...
...

...
...

...
...

...
...

...
VB , wil join the board 0 0 0 0
...

...
...

...
...

...
...

...
...

...
NNP nonexecutive director Nov. 29 . 0 0 0 0
CD director Nov. 29 . 0 0 1 0 0
. Nov. 29 . 0 0 0 0 0 1

Table 1: An example of (Tag, Context) pairs

• wi represents the central word

12



• wi−1 and wi+1 represent respectively the preceding word and the following word by one
position

• wi−2 and wi+2 represent respectively the preceding word and the following word by two
positions

• Digit and Capital check if the central word is a digit or if it starts with a capital respectively

• w0 is equal to 1 if the central word is a starting word (the first word of the sentence), 0
otherwise.

• w∞ is equal to 1 if the central word is an ending word (the last word of the sentence) and
0 otherwise.

For instance the pair (w10, t10) = (the,DT) is transformed into (t10, x10) = (DT, x10) where
x10 = (will, join, the,board, as, 0, 0, 0, 0).

(2) a feature function that takes a context and returns a high-dimensional binary vector. Each
component of this vector (or feature) equals 1 if the condition is satisfied and 0 otherwise. To
accomplish this, we construct a dictionary of central words, a dictionary of words one position
before the central word, a dictionary of words two positions before the central word, and so
on. We concatenate these five dictionaries. For a context xi, we retrieve the ”previous word”
information. If this word appears in the dictionary of previous words, then the context feature
vector will have zero components everywhere except for the position of the word. The conditions
are of the form wi = a particular word from the dictionary of central words, wi−1 = a particular
word from the dictionary of previous words, etc. That is we create as many dichotomic variables
as there are possible sequences of 5 words and select only the one that occurs more than a given
threshold.

For example, if the dictionary of words corresponding to two positions before the central
word contains 35 words, and the current context being examined contains information wi−2

that appears at the 4th position of this dictionary, then the feature vector block corresponding
to the words two positions before the central word for this context will be of the form:

(0, 0, 0, 1, 0, 0, . . . , 0, 0)

Actually, the position of the 1 does not only indicate the presence of an information related
to the word alone, but to the word combined with a tag, which means that there may be two
positions (two features) for the same word but with a different tag. Therefore, it should be
understood that the features are functions of the pair f(xi, ti) and not just functions of the
context f(xi). In the example of POS-Tagging given in ([20]), we see that the word ”flies” can
have two possible tags (NN and VB). So, for this same word, there will be two different features
in the block of the central word, one that activates only when the central word of the context
xi=flies and ti =NN, and a second feature that activates when the central word of the context
xi =flies and ti =VB.

features . . . . . . . . . (flies,NN) (flies,VB) . . . . . . . . . . . . . . .
↓ ↓ ↓ ↓ ↓

f(flies,NN) 0 . . . 0 1 0 0 0 . . . 0 0
f(flies,VB) 0 . . . 0 0 1 0 0 . . . 0 0

We also construct some features that look at pairs (tag, suffix) where the suffix represents the
last three or the last two letters of the central word of a given context. We also perform a
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filter-based selection of the features to only keep those that are observed more than ten times
(since it was sufficient in our case to get good performance, but the filter with a threshold equal
to 10 can be modified in other cases).

With the dataset now expressed as a collection of (ti, f(ti, xi)) pairs, it provides the basis
for model estimation.

4.2 Results

After estimating µ, by the empirical mean

µ̂N =
1

N

N∑
i=1

f (ti, xi)

on the entire initial dataset, we split the dataset into two parts:

• a training sample {(ti, f(ti, xi))}i∈{1,...,n} (representing 75% of the initial dataset)

• a test sample {(ti, f(ti, xi))}i∈{1,...,n0} (25% of the initial dataset).

On the training dataset, we calculate the empirical mean f̄n = 1
n

∑n
i=1 f (ti, xi) and the empirical

covariance matrix of the features

S2
n =

1

n

n∑
i

(f(xi, ti)− µ̂N ) (f(xi, ti)− µ̂N )
′

.
To calibrate the penalty parameter ρ we use the method introduced by Ledoit and Wolf

(2000) [24] and further developed in [21]. The main idea is to use a penalized estimator of
the empirical covariance matrix (which precisely appears in our expressions of the conditional
probabilities of tags) and to choose the estimated version of the penalty that minimizes the
Frobenius norm between this estimator and the true covariance matrix. Recall that the modified
Frobenius scalar product and its associated norm are defined, for any compatible matrices or
vectors A and B, by

⟨A,B⟩ =
Tr
(
AB⊤)
d

, ∥A∥2 = ⟨A,A⟩ =
Tr
(
AA⊤)
d

.

The optimal estimated penalty is then given by

ρn =
β̂2
nσ̂

2
n

α̂2
n

where σ̂2
n =

〈
S2
n, Id

〉
; δ̂2n =

∥∥S2
n − σ̂2

nId
∥∥2 ; α̂2

n = δ̂2n − β̂2
n

with β̄2
n =

1

n2

n∑
i=1

∥∥f(xi, ti)(f(xi, ti))
′ − S2

n

∥∥2 and β̂2
n = min

(
β̄2
n, δ̂

2
n

)
.

This allows us to estimate the conditional probabilities of each tag given the context x as
follows

∀ti ∈ T , p̂ (ti|x) =
e−(f̄n−µ̂N )′(S2

n+ρnId)
−2

(f(x,ti)−µ̂N )∑
tk∈ T

e−(f̄n−µ̂N )′(S2
n+ρnId)

−2(f(x,tk)−µ̂N )
.

Once these probabilities are obtained, the tag assigned to the input context is the one for
which the estimated conditional probability is the highest :

∀xi ∈ Training set, t̂i = argmax
tk∈T

{p̂ (tk, xi)} .
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We then estimate the model’s error on the test sample by the number of misclassifications :

Error =
1

n0

n0∑
i=1

1{ti ̸=t̂i} ⇔ Precision =
1

n0

n0∑
i=1

1{ti=t̂i} = 1− Error.

The same procedure is repeated 10 times on different random samples of size N=10000
drawn without replacement from the initial dataset containing 100676 entries (tag-context pairs).
Finally, we achieve an estimation accuracy of 98% (on average over the different training samples)
and a prediction accuracy of 95% (on average over the test samples).

The estimated conditional probabilities
Here is an example of the values of the estimated conditional probabilities for the following
sentence which is an observed sentence among the training set:

(w1, . . . , w18) = Pierre Vinken, 61 years . . . Nov. 29.

Let’s consider (x1, . . . , x18) the corresponding contexts to each word (wi)i=1,...,18, i.e.:

Pierre Vinken , 61 years . . . nonexecutive director Nov. 29 .
↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕
(x1 x2 x3 x4 x5 . . . x14 x15 x16 x17 x18)

The table 2 gives the conditional probabilities of a tag given a context. It gives also
the predicted POS-tag for each context which is simply the tag with the highest conditional
probabilities. The probability values are rounded.

Tag t
Conditionnal probabilities P (t|xi)

x1 x2 x3 . . . x16 x17 x18

NN 0.21 0,02 0,017 . . . 0.41 0 0
NNS 0 0 0 . . . 0 0 0
NNP 0.76 0.95 0 . . . 0.4 0 0
...

...
...

...
...

...
...

...
VBD 0 0 0 . . . 0 0 0

Predicted POS-tag NNP NNP , . . . NN CD .

Table 2: Estimated conditional probabilities

We also constructed a similar model that classifies input text into simple or complex versions
(see Chapter 4 of Issouani’s thesis [20].

Appendix

Appendix 1: New classifiers

Most divergences used in practice (Kullback, relative entropy, χ2 and Hellinger among others)
are specific cases of the Cressie-Read divergence (see Csiszár 1967). Table 3 (partly taken from
Bertail et al. (2007) [6]) displays the corresponding convex functions φα and their domains,
along with the optimal conditional probability expressions p̂(t|x) arising from each divergence.
For the general Cressie-Read family, the domain depends on α, as illustrated by the examples.
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Appendix 2: Proofs

The following lemma is taken from Owen (2001) (11.2 and 11.3, pg 225. [36]).

Lemma Let Z = (Zi)
n
i=1 be a sequence of independent and identically distributed random

variables, and for every n ∈ N, define ∥Z∥∞ = maxi=1,...,n |Zi|. If E
[
Z2
1

]
< ∞, then ∥Z∥∞ =

o
(
n1/2

)
and 1

n

∑n
i=1 |Zi|3 = o

(
n1/2

)
, in probability.

Primal and dual program
Recall that he penalized generalized empirical φ-divergence is given by

γn(θ, λ) = Pn

(
− λ⊤g (., θ)− φ(λ⊤g (., θ))

)
− 1

2
||λ||2R. (10)

For sake of simplicity, we choose here, for some ρn > 0, R = ρnI and ||λ||2R = ρnλ
⊤λ. This

expression becomes in the relative entropy case (φ(x) = ex − 1− x) as follows

γn(θ, λ) = 1 +
1

n

n∑
i=1

(
− exp

(
λ⊤ (g (Zi, θ))

)
− ρn

2
||λ||2

)
.

Optimisation according to λ
The derivative with respect to λ on the right-hand side of Equation (10) is zero for j ∈ {1, . . . , d},
yielding the conditions

∀j ∈ {1, . . . , d} 0 =

n∑
i=1

gj (Zi, θ)
[
1 + φ(1)

(
λ⊤g(Zi, θ)

)]
+ ρnλj .

As in Owen’s book ([36]), consider Vi = g(Zi, θ), so that Vi is centered and has covariance matrix
denoted by Σd = E

[
g(Z1, θ)g(Z1, θ)

⊤] = E
[
V1V

⊤
1

]
and define the function g as

G(λ) =
1

n

n∑
i=1

Vi

[
1 + φ(1)

(
λ⊤Vi

)]
+ ρnλ = 0. (11)

Now let λ∗
n be the solution of G(λ∗

n) = 0. Define λ∗
n = ∥λ∗

n∥ξn where ξn is a unit vector
∥ξn∥2 = 1. It follows that

0 = ξ⊤n G(λ∗
n) =⇒ −ξ⊤n V̄n =

1

n

n∑
i=1

ξ⊤n Vi · φ(1)
(
λ∗⊤
n Vi

)
+ ρn ξ

⊤
n λ∗

n.

Consider a point ti within the interval
[
0, ξ⊤n Vi

]
. A Taylor expansion of φ(1) around zero

gives
φ(1)

(
∥λ∗

n∥ξ⊤n Vi

)
= ∥λ∗

n∥ξ⊤n Vi · φ(2) (∥λ∗
n∥ti) ,

with ti ∈
[
0, ξ⊤n Vi

]
. Using the fact that φ(2) is bounded below by m, we have

−ξ⊤n V̄n = ∥λ∗
n∥

1

n

n∑
i=1

(
ξ⊤n Vi

)2 · φ(2) (∥λ∗
n∥ti) + ρn ξ

⊤
n λ∗

n,

≥ m∥λ∗
n∥

 1

n

n∑
i:ξ′nVi≥0

(
ξ⊤n Vi

)2
+ ρn

 ,

≥ m∥λ∗
n∥ρn.
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The Central Limit Theorem implies

−ξ⊤n V̄n = OP

(
n−1/2

)
.

Thus,

∥λ∗
n∥2 = OP

(
n−1/2/ρn

)
.

Now, we define

λ̃n = λ∗
n +

(
S2
n + ρnI

)−1
V̄n, where S2

n =
1

n

n∑
i=1

ViV
⊤
i .

Then, performing a first-order Taylor expansion of φ(1) around zero in G(λ∗
n) yields

0 = φ(2)(0)(S2
n + ρnI)λ̃n +

1

n

n∑
i=1

Viαi,n

where, uniformly in i, we have

∥αi,n∥ ≤ B
∣∣λ∗⊤

n Vi

∣∣ ≤ B ∥λ∗
n∥ ∥V ∥∞ = oP(1)

since ∥V ∥∞ = maxi=1,...,n ∥Vi∥ = oP
(
n1/2

)
by Lemma 2.2. Finally, since S2

n + ρnI is bounded

below by ρn and V̄n − θ = OP
(
n−1/2

)
, we have

λ̃n = oP

(
n−1/2ρn

)
.

This means that
λ∗
n = −

(
S2
n + ρnI

)−1
V̄n + oP

(
n−1/2ρn

)
Now we have the expansions (of order 2 of φ)

γn(θ, λ
∗
n) = −n · λ∗⊤

n V̄n −
n∑

i=1

φ
(
λ∗⊤
n Vi

)
− 1

2
∥λ∗

n∥2R,

= −n · λ∗⊤
n V̄n −

n∑
i=1

((
λ∗⊤
n Yi

)2
2

φ(2)(0) +
ρn
2
λ∗⊤
n λ∗

n + α̃i,n

)
,

= −n · λ∗⊤
n V̄n − n

2

(
λ∗⊤
n

(
S2
n + ρnI

)
λ∗
n

)
−

n∑
i=1

α̃i,n ,

= −nλ∗⊤
n V̄n −

n∑
i=1

α̃i,n − n

2

[
λ̃⊤
n (S

2
n + ρnI)λ̃n − 2λ̃⊤

n V̄n

+V̄ ⊤
n (S2

n + ρnI)
−1V̄n

]
,

= nV̄ ⊤
n (S2

n + ρnI)
−1V̄n −

n∑
i=1

α̃i,n

−n

2
λ̃⊤
n (S

2
n + ρI)λ̃n − n

2
V̄ ⊤
n (S2

n + ρnI)
−1V̄n,

=
n

2
V̄ ⊤
n (S2

n + ρnI)
−1V̄n − n

2
λ̃⊤
n (S

2
n + ρnI)

−1λ̃n −
n∑

i=1

α̃i,n.

We have ∥α̃i,n∥ ≤ B̃
∣∣λ∗⊤

n Vi

∣∣3 , for some constant B̃ > 0, in probability.
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This leads to: ∥∥∥∥∥
n∑

i=1

α̃i,n

∥∥∥∥∥ ≤ B̃3 ∥λ∗
n∥

3
n∑

i=1

∥Vi∥3 ,

= OP

(
n−3/2

)
· n · oP

(
n1/2

)
,

= oP(1).

It follows that

γn(θ, λ
∗
n, ρn) =

n

2
V̄ ⊤
n (S2

n + ρnI)
−1V̄n + oP(1)

Notice that this is exactly the expression one would obtain with a penalized χ2 divergence
(without any remainder).

Consider µ = [µj ]{j=1,...,d} the eigenvalues of the empirical covariance matrix S2
n = Png(., θ)g(., θ)

⊤.
Define

∀ρn > 0,
µ

µ+ ρn
=

{
µj

µj + ρn

}
j=1,...,d

and the so-called effective dimensions∥∥∥∥ µ

µ+ ρn

∥∥∥∥
1

=

d∑
j=1

∣∣∣∣ µj

µj + ρn

∣∣∣∣ and ∥∥∥∥ µ

µ+ ρn

∥∥∥∥
2

=

√√√√ d∑
j=1

(
µj

µj + ρn

)2

.

Now follow the same arguments as in [37], since we assume that the largest eigenvalue of the

true covariance matrix is bounded and that
∥∥∥ µ
µ+ρn

∥∥∥
2
−−−−→
n→∞

∞ as d ≥ n goes to ∞. It follows

from their Theorem 1 that

2γ∗
n(θ)−

∥∥∥ µ
µ+ρn

∥∥∥
1√

2
∥∥∥ µ
µ+ρn

∥∥∥2
2

D−−−−→
n→∞

N (0, 1).
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[20] E. M. Issouani. Modèles et algorithmes de simplification automatique de textes. PhD thesis,
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