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moments). For this, we use a penalized estimator of the covariance matrix and propose an
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1. Introduction

In many applications (for instance in genomics or natural language processing), the
dimension of the parameter of interest q is large in comparison to the sample size n
and sometimes is increasing with n. Consider for instance the problem of estimating
or testing a mean of variables in Rq, with q > n; in that case, the empirical covariance
matrix is not full rank and does not even converge to the true one when n tends to infinity
and is ill-conditioned (see Johnstone (2001) [8]). As a consequence, the usual Hotelling’s
T 2
n tests in a large dimension framework are no longer valid. It is thus important to

construct estimators and testing procedures that take into account the high dimensional
aspects of the problem (as done for instance in Ledoit and Wolf (2000, 2022) [11, 12],
see also the references therein). One relevant proposition which has been developed in
the statistical literature is to use a penalized estimator of the covariance matrix which
is non-singular and to use this matrix in tests. In that spirit, Chen et al. (2011) [5]
have obtained asymptotically valid regularized Hotelling’s T 2

n tests for the mean in the
Gaussian case in a high dimensional framework, when n and q ≡ q(n) tend to infinity at
some specific rate. Li et al. (2020) [14] have extended these results to some specific sub-
gaussian distribution. The purpose of this paper is to further explore the finite sample
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properties of such tests by deriving exponential bounds of some correctly regularized
Hotelling’s T 2

n under general distributions, including ones with very few moments.
Such bounds allow to build conservative confidence regions for the parameter of inter-

est. They are also of interest in statistical learning to control risk even with unbounded
loss functions.

For this, we derive exponential bounds for some regularized Hotelling’s T 2
n statistics in

the spirit of Bertail et al (2008) [2], who obtained bounds for self-normalized quadratic
forms or the Hotelling’s T 2

n statistic when q < n. We show that for symmetric distribu-
tions, only moments of order 2 are needed and we only assume the existence of moments
of order 8 for general distributions.

Let Z,Z1, ..., Zn be i.i.d. centered random vectors with probability distribution P ,
defined on a probability space (Ω, A,P) with values in

(
Rq(n),B, P

)
endowed with the L2

norm ∥.∥2. We denote E the expectation under P . Put Z(n) = (Zi)1≤i≤n. As n and q(n)

go to infinity, notice that actually (Z(n))n defines a triangular array of random variables
with varying dimensions. However, since we are interested in finite sample properties,
we will drop the dependence in n. In particular, we use q instead of q(n). But keep in
mind that q is a function of n in an asymptotic framework. The covariance matrix of the
observation is given by S2 = E (ZZ ′) , where we denote by Z ′ the transpose of Z and S
the square root of S2. The sample covariance matrix is defined here by

S2
n

(
Z(n)

)
=

1

n

n∑
i=1

ZiZ
′

i .

To simplify notations, we denote the sample covariance matrix of Zi’s by S2
n when there

is no confusion. Notice that we do not center by the empirical mean.
Denote by

Z̄n = n−1
n∑

i=1

Zi.

We recall that Hotelling’s T 2
n , which can be seen as a quadratic form of self-normalized

sums, is given by
T 2
n = nZ̄ ′

nS
−2
n Z̄n,

when q < n and S−2
n =

(
S2
n

)−1
. For some nonnegative real numbers, ρ1 and ρ2, define

Σ2
n the linear combination of the identity matrix with the sample covariance matrix

Σ2
n ≡ Σ2

n (ρ1, ρ2) = ρ1Iq + ρ2S
2
n,

with Iq the identity matrix of size q. For ρ1 = 0 and ρ2 = 1, Σ2
n(0, 1) = S2

n is the
empirical covariance matrix, which is singular for q > n. When ρ2 = 1 and ρ1 > 0 (and
small), Σ2

n corresponds to a Tikhonov regularization of the sample covariance matrix: see
Tikhonov (1963) [20]. It is precisely this estimator which is used in the tests proposed
by Chen et al (2011) [5]. However, it is shown in Ledoit and Wolf (2000) [11] that if one
chooses adequately ρ1 and ρ2 then one can obtain a well-conditioned estimator of the
covariance matrix which is invertible and more accurate than the sample covariance for
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Exponential bounds in high dimension 3

some L2-distance.
We denote by Σ2 the expectation of Σ2

n, which is given by

Σ2 ≡ Σ2 (ρ1, ρ2) = ρ1Iq + ρ2S
2.

Actually, such modification ensures that we can control the distance between Σ2
n and S2:

this will be fundamental to obtain exponential bounds.
In the following, we are interested in the Hotelling’s T 2

n statistic with a linear combination
of the sample covariance and the identity, that we now call the regularized Hotelling’s
T 2
n statistic defined by

T 2
n (ρ1, ρ2) = nZ̄ ′

nΣ
−2
n (ρ1, ρ2) Z̄n

generalizing the proposal of Chen et al (2011)[5].
In the framework of high dimension, such quantities also appear naturally when study-

ing empirical likelihood under a lot of constraints, penalized in its dual form by an L2-
norm: see for instance Newey and Smith (2004) [16], Lahiri and Mukhopadhyay (2012),
[9], Carrasco and Kontchoni (2017) [3] among others.

When q < n, exponential bounds for T 2
n(0, 1) (that is, with the empirical covariance

matrix instead of a regularized one) have been obtained by Bertail et al (2008) [2]. Their
exponential bound is controlled by two terms: (1) an exponential term corresponding to
a ”Hoeffding” or Pinelis (1994) [18] type of inequality applied to a symmetrized version
of the observations and (2) an exponential bound which essentially controls the minimum
eigenvalue of the sample covariance matrix and the proximity of S2

n to S2. However, for
q ≥ n such inequality can not hold since in that case the minimum eigenvalues of S2

n is
always 0. Moreover, it can easily be seen from the results of [2] that the bound becomes
very bad when q > n or/and when q and n are of the same order. We obtain in this
paper general results with an adequate choice of ρ1 and ρ2 when q is bigger than n and
when q and n are such that q

n → l ∈ ]0,∞[.
The paper is divided into four parts including this introduction. In the second part,

we recall some known exponential inequalities for q < n under weak moments assump-
tions. Then we obtain an oracle exponential inequality for the regularized Hotteling’s
T 2
n , assuming that the values ρ1 and ρ2 are fixed and known. Some interesting sharp

bounds which may be useful in statistical learning assuming symmetry are obtained for
any n and q large. We then establish a general inequality for q = O(n) for non-symmetric
distributions under a few moments’ assumptions. In the third part, we estimate the op-
timal values ρ∗1 and ρ∗2 and show that the inequality remains valid up to some additional
small terms controlling the concentration of these estimators around their true value. We
illustrate our results with some simulations in the last part.

2. Oracle exponential bounds for regularized
Hotelling’s T 2

n

In the following, we define the penalized Hotelling’s T 2
n as the particular regularized

Hotelling’s statistic T 2
n(ρ, 1) with ρ ≥ 0. The aim of this section is to establish an oracle
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exponential inequality of the distribution of the penalized Hotelling’s T 2
n in the case q ≥ n

and when the distribution of the data is symmetric (Theorem 2.1 and Theorem 2.2) as
well as in the general case, that is when the distribution is not necessarily symmetric
(Theorem 2.3).

2.1. Known bounds for Hotelling’s T 2
n

Some bounds for T 2
n or self-normalized sums may be quite easily obtained in the sym-

metric case (that is for random variables having a symmetric distribution see Pinelis
(1994) [18]) and are well-known in the unidimensional case q = 1. In non-symmetric
and/or multidimensional cases with q < n, these bounds are new and not trivial to
prove. One of the main tools for obtaining exponential inequalities in various settings
is the famous Hoeffding inequality (see Hoeffding (1994) [7]). For centered independent
real random variables Y1, ..., Yn, that are bounded, say |Yi| < 1, for all i = 1, ..., n, we
have, for ai ∈ [−1, 1] such that

∑
a2i = 1,

∀t > 0, P

( n∑
i=1

aiYi

)2

≥ t

 ≤ 2 exp

(
− t

2

)
.

A direct application of this inequality to self-normalized sums (via a randomization
step introducing independent Rademacher r.v.’s εi) yields that, for independent real
(q = 1) symmetric random variables Zi, i = 1, .., n and not necessarily bounded (nor
identically distributed). Indeed, we have by putting Yi = εi and ai =

Zi

(
∑

Z2
i )

1/2

∀t > 0, P
(
T 2
n ≥ t

)
= P

(
(
∑n

i=1Zi)
2∑n

i=1Z
2
i

≥ t

)
= P

(
(
∑n

i=1Ziεi)
2∑n

i=1Z
2
i

≥ t

)

= E

[
P

(
(
∑n

i=1Ziεi)
2∑n

i=1Z
2
i

≥ t
∣∣∣ (Zi)i=1,..n

)]

≤ 2 exp

(
− t

2

)
.

Pinelis (1994) [18] has obtained with a different technique, a sharp χ2 type of bounds
which generalizes this kind of results for multivariate data when q < n. He proved that,
if Z has a symmetric distribution, without any moment assumption on the variables Zi,
then one has

∀t > 0, P
(
T 2
n ≥ t

)
≤ 2e3

9
F q(t), (1)

where Fq(t) is the cumulative distribution function (cdf) of a χ2(q) distribution. The
density is denoted by fq. A crude approximation yields that for t large enough,

P
(
T 2
n ≥ t

)
≤ e3

9

22−
q
2

Γ( q2 )
t
q
2−1 exp(−t/2),
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Exponential bounds in high dimension 5

where Γ (x) =
∫ +∞
0

tx−1e−tdt is the gamma function.
Notice that, for q = 1 this bound (only valid for large t) is better than the crude Hoeffding
bound since we recover the missing factor 1√

t
in front of the exponential (see Talagrand

(1995) [19]). When q < n, using a multidimensional version of Panchenko’s symmetriza-
tion lemma (Panchenko (2003) [17]) Bertail et al (2008) [2] have obtained an exponential

inequality for the general distribution of Z with finite kurtosis γ4 = E
(∥∥S−1Z

∥∥4
2

)
. More

precisely, they establish that under 0 < γ4 < ∞,
(i) for t > nq, P

(
T 2
n ≥ t

)
= 0.

(ii) for any a > 1, and any nonnegative t such that 2q(1 + a) ≤ t ≤ nq, the following
bound holds:

P(T 2
n ≥ t) ≤ 2e3

9Γ( q2 + 1)

(
t− q(1 + a)

2(1 + a)

) q
2

exp

(
− t− q(1 + a)

2(1 + a)

)
+C(q)n3− 6

q+1 exp

(
−
n
(
1− 1

a

)2
γ4(q + 1)

)
,

where C(q) is an explicit constant.
The first term is essentially equivalent to the tail of a χ2(q) distribution (up to an

explicit constant), while the second term controls the speed of convergence of S2
n to S2,

when γ4 < ∞. The constant a controls the balance between these two terms on the right-
hand side of the inequality and may be optimized. Notice that this second exponential
term is small when q << n but explodes in n3 if q/n → l > 0 for large n, making this
bound totally useless in that case.

In the general multidimensional framework considered in Bertail et al (2008) [2] and in
this paper, the main difficulty is to keep the self-normalized structure when symmetrizing
the initial sum. In the next sections, the results of Bertail et al (2008) [2] obtained
for q < n are extended to the case q ≥ n by using a regularized version of S2

n. This
inequality is based on an appropriate diagonalization of the regularized sample covariance
matrix which allows applying Pinelis (1994)’s inequality [18] (see section 2.2). This crude
inequality is refined in section 2.3. When dealing with the general case (see section 2.4),
we establish first a multivariate symmetrization lemma 4.2 in the spirit of Panchenko
(2003) [17]. This symmetrization partially destroys the self-normalized structure (the
normalization is then Σ2

n +Σ2 = 2Σ2
n + (Σ2 −Σ2

n) instead of the expected normalization
Σ2

n), but the right standardization can be recovered (up to the factor 2) by obtaining a
lower tail control of the distance between Σ2

n and Σ2. To control this distance and make
it as small as possible we will use the results of Ledoit and Wolf (2000) [11].

2.2. Bounds for regularized Hotelling’s T 2
n in a symmetric

framework

We now obtain a simple inequality for the regularized Hotelling’s T 2
n in the symmetric

case, based on previous results by Pinelis (1994) [18]. It essentially shows that the tail of
the regularized Hotelling’s T 2

n is controlled by the tail of a χ2 (n) distribution.
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Theorem 2.1. Assume that Z has a symmetric distribution with finite covariance ma-
trix then, without any additional moment assumption, we have, for any n > 1, for t > n,
for any ρ1, ρ2 > 0,

P
(
T 2
n

(
ρ1
ρ2

, 1

)
≥ t

)
= P

(
nZ̄ ′

nΣ
−2
n (ρ1, ρ2) Z̄n ≥ t

ρ2

)
≤ 2e3

9
F̄n (t)

≤ 2e3

9
exp

(
− (t− n)2

4t

)
, (2)

where Fn is the cdf of a χ2(n) distribution.
Moreover, for any ρ > 0, we have

P
(
T 2
n (ρ, 1)− n√

2n
≥ t

)
= P

(
nZ̄ ′

nΣ
−2
n (ρ, 1) Z̄n − n√

2n
≥ t

)

≤ 2e3

9
exp

 −t2

2
(
1 +

√
2 t√

n

)
 . (3)

The inequality (2) yields a control of T 2
n(ρ1, ρ2) = nZ̄ ′

nΣ
−2
n (ρ1, ρ2) Z̄n, when using a

linear shrinkage estimator of the variance. This in turn can be simplified in (3), to a truly
penalized Hotelling’s T 2

n . Note that for any ρ1, ρ2 > 0,

Σ2
n (ρ1, ρ2)

ρ2
=

ρ2S
2
n + ρ1Iq
ρ2

= S2
n +

ρ1
ρ2

Iq

and for any ρ > 0,
Σ2

n (ρ, 1) = S2
n + ρIq

is a penalized estimator of the covariance matrix. Inequality (3) can be interpreted as a
Bernstein-type inequality.

Remark: These inequalities hold for any choice of ρ1 and ρ2. However for the inequalities
to be sharp, ρ1 and ρ2 should be chosen adequately. First from the proof of Theorem
2.1, we see that the inequality is sharp only when ρ1 is close to 0, which is in accordance
with what we know about Tikhonov regularisation (1963) [20]. Actually when ρ1 tends
to 0,Σ−2

n (ρ1, ρ2) is going to be identical to 1
ρ2
(S2

n)
− where (A)

−
is the Moore-Penrose

or generalized inverse of A (which is unique for symmetric matrices). Notice that the

proof of the theorem and the inequality remain valid if we use nZ̄ ′
n

(
S2
n

)−
Z̄n rather

than nZ̄ ′
nΣ

−2
n (ρ1, ρ2) Z̄n. In the procedure of Chen et al. (2011) [5] this means that

asymptotically there is no difference between standardizing by the regularized variance
or by the generalized inverse of the covariance matrix. The regularization just serves as
a trick to approximate the generalized inverse. However, the finite sample properties of
the regularized Hotelling’s T 2

n will strongly depend on the choice of ρ1 and ρ2.
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Exponential bounds in high dimension 7

2.3. An improved bound for penalized Hotelling’s T 2
n in the

symmetric case

It can be seen from the proof of Theorem 2.1 that the penalized Hotelling’s T 2
n statistic

essentially behaves like a weighted sum of asymptotically χ2 random variables. This also
explains the results of Chen et al. (2015) [5]. Actually, we can obtain a bound for this
quantity relying on the results of Pinelis (1994) [18] and Laurent and Massart (2000) [10]
(see p.24 of their paper) who control the tail of the weighted sum of independent χ2(1)
random variables.
Let λ = (λj)j=1,...,q ∈ Rq

+ be the eigenvalues of S2
n (ordered in a increasing order). We

define for any ρ1, ρ2 > 0, the following effective dimensions (see [5] for other expressions
of these quantities):

Θ1(λ, ρ1, ρ2) =

inf(n,q)∑
j=1

λj

ρ1 + ρ2λj

Θ2(λ, ρ1, ρ2) =

√√√√inf(n,q)∑
j=1

λ2
j

(ρ1 + ρ2λj)2

Θ∞(λ, ρ1, ρ2) = sup
1≤j≤inf(n,q)

(
λj

ρ1 + ρ2λj

)
.

In the next result, we obtain a sharp bound for regularized and penalized Hotelling’s
T 2
n . Notice that, in that case, the recentering factor depends on Θ1(λ, ρ1, ρ2) and is

random. In the proof of Theorem 2.1, this value is essentially bounded by n/ρ2, which is a
very bad approximation when ρ2 is small. Theorem 2.2 tells that, for q ≥ n, the tail of the
regularized Hotelling’s T 2

n statistic behaves as the weighted sum of n independent χ2(1)

r.v.’s where the weights are given by the random factors
λj

ρ1+ρ2λj
. We get some Bernstein

bounds for this weighted sum by first randomizing by some independent Gaussian r.v.’s,
then conditioning on the data and applying Laurent and Massart (2000)’s Bernstein
inequality [10]. This inequality in turn can be transformed into some exact bounds for
the statistics of interest.

Theorem 2.2. Assume that Z has a symmetric distribution then, without any moment
assumption, we have, for any n > 1 and q > 0, for any t > 0 and for any ρ1, ρ2 > 0,

P

(
T 2
n(ρ1, ρ2)−Θ1(λ, ρ1, ρ2)√

2Θ2(λ, ρ1, ρ2)2
≥

√
2

(√
t+

Θ∞(λ, ρ1, ρ2)

Θ2(λ, ρ1, ρ2)
t

))
≤ C exp(−t).

with C = 3824.
Or equivalently, we have for the penalized Hotelling’s statistic, for n > 1 and q > 0, for
any t > 0 and, for any ρ > 0,

P
(
T 2
n(ρ, 1)−Θ1(λ, ρ, 1)

Θ2(λ, ρ, 1)
≥

√
2t+

Θ∞(λ, ρ, 1)

Θ2(λ, ρ, 1)
t

)
≤ C exp

(
− t

2

)
.
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In the symmetric case, this theorem enables us to easily obtain confidence regions of
level 1− δ, for δ ∈ [0, 1] for the regularized Hotelling’s statistic, as stated in the following
corollary.

Corollary 2.1. Put c(δ) = log C
δ with C = 3824. Then, for any n > 1 and q ≥ 1, for

any t > 0 and for any ρ1, ρ2 > 0, with probability 1− δ, we have

T 2
n(ρ1, ρ2)≤Θ1(λ, ρ1, ρ2) +2Θ2(λ, ρ1, ρ2)

(√
c(δ)+

Θ∞(λ, ρ1, ρ2)

Θ2(λ, ρ1, ρ2)
c(δ)

)
,

The proof of this corollary is left to the reader. This result holds for any n and q.
When q ≤ n is large, we can actually put ρ1 = 0 and get some Pinelis’ type bounds
(when the χ2 distribution tail is itself approximated by a Gaussian tail).

The constant C comes from a result of Chasapis and al (2022) [4] who extended a result
of Pinelis [18] (1994). Indeed they state that, when symmetrizing, for smooth functions
of quadratic forms, Rademacher variables may be replaced by standard normal variables.
However, their constant is clearly not optimal and we expect the optimal C to be 2e3/9
as in Pinelis [18] (1994).

The bounds in Theorem 2.2 and Corollary 2.1 can be used in practice for testing pur-
poses in particular in anomaly detection in statistical learning. See for instance the liter-
ature on intrusion detection systems using multivariate control charts based on Hotelling
T 2
n (for instance Tracy et al. (1992) [21] and further works by these authors).

2.4. Bounds for regularized Hotelling’s T 2
n for non symmetric

distribution

We now consider Z with a general (not necessarily symmetric) distribution. We will later
prove a symmetrization lemma that generalizes the one obtained in Bertail et al. (2008)
[2]. In the following, we also use the results of Ledoit and Wolf (2000) [11] to optimally
control the distance between Σ2

n (ρ1, ρ2) and S2. For this, consider the modified Frobenius
scalar product between matrices and the corresponding norm given by

⟨A,B⟩ = Tr (AB′)

q

and

∥A∥2 = ⟨A,A⟩ = Tr (AA′)

q
. (4)

Note that dividing the standard Frobenius scalar product by q enables the norm of
the identity Iq to be equal to 1, which is more convenient. In the following, we extend
this modified Frobenius norm to vectors by considering, for any vector Z ∈ Rq,

∥Z∥2 = Tr (ZZ ′) /q.
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Exponential bounds in high dimension 9

2.4.1. Additional notations and hypotheses

Put S2 = (σkj)1≤k,j≤q and consider Λ the diagonal matrix of the eigenvalues of S2

and O the matrix of associated eigenvectors. The eigenvalues are denoted µ1, ..., µq with
µ1 ≤ µ2 ≤ .... ≤ µq. We have S2 = O′Λ2O.
Now, for i = 1, . . . , n, we define

Yi = OZi

with Yi = (Yi,1, ..., Yi,q)
′
.

In order to provide a well-conditioned estimator for large dimensional covariance matri-

ces, Ledoit and Wolf (2000) [11] have studied the minimum of E
(∥∥Σ2

n (ρ1, ρ2)− S2
∥∥2).

This minimization can be seen as a projection problem in the Hilbert space of random
matrices, equipped with the inner product ⟨A,B⟩H = E [⟨A,B⟩] with associated norm

∥.∥2H = E ∥.∥2.
We assume the four following assumptions:

(A1) ∃K0,K1 > 0 such that, for any n and any q ≥ n, K0 ≤ q
n ≤ K1.

(A2) ∃K2 > 0 such that, for any n and any q ≥ n, 1
q

∑q
j=1 E

[
Y 8
1,j

]
≤ K2.

(A3) ∃K3 > 0 such that for any n and any q ≥ n, 1
K3

< µ1 ≤ µq < K3.

(A4) ∃K4 > 0 such that for any n and any q ≥ n,

ν =
q2

n2
×
∑

(i,j,k,l)∈Q (Cov (Y1,iY1,j , Y1,kY1,l))
2

Card (Q)
≤ K4

n
,

where Q denotes the set of all the quadruples that are made of four distinct integers
between 1 and q.

Remarks: (A2) and (A4) are already assumed in Ledoit and Wolf (2000) [11]. First
assumption (A1) essentially means that q = q(n) is of the same order as n. (A2) states
that the moment of order 8 is bounded in average: this condition holds if the following
moment of order 8, 1

q

∑q
j=1 E

[
Z8
1,j

]
is finite (by sub-multiplicative inequality and the fact

that ∥O∥ = 1). This is a weak condition: we do not require exponential moments and
allow for fat tail behavior of the sample. (A3) ensures that the largest and the smallest
eigenvalue of the true covariance matrix are bounded. This rules out the case when the
components of the vector Z are too correlated: consider for instance the degenerate case
where S2 is a matrix full of 1, then in that case the smallest eigenvalue is 0 and the
largest is q. The case of a vector with long memory components is studied in Merlevède
et al. (2019) [15] : they show that the largest eigenvalue is unbounded. Thus this case
does not enter our framework. Assumption (A4) is immediate in the Gaussian case, since
ν = 0 because of the rotation which makes the Y1,j ’s j = 1, ..., q independent. Obviously,
for (Z1,j)j independent, ν = 0 as well. More generally if the components of the vector
satisfy some adequate α-mixing conditions, then the sum in the hypothesis (A4) can be
seen as a sum of cumulants and may also be controlled using the arguments of Doukhan
and León (1989) [6].
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2.4.2. Inequalities for random variables with a general distribution

The next Theorem 2.3 extends Theorem 2.1 to general distributions which are not nec-
essarily symmetric. From now on, following Ledoit and Wolf (2000) [11], we denote ρ∗1
and ρ∗2 the optimal values defined as the minimum arguments of E

∥∥Σ2
n (ρ1, ρ2)− S2

∥∥2.
Ledoit and Wolf (2000) [11] have obtained

ρ∗1 =
β2

δ2
σ2 and ρ∗2 =

α2

δ2
,

with
σ2 =

〈
S2, Iq

〉
; α2 =

∥∥S2 − σ2Iq
∥∥2 ; β2 = E

∥∥S2
n − S2

∥∥2
and δ2 = α2 + β2 = E

∥∥S2
n − σ2Iq

∥∥2 .
Now, we define, for α2 ̸= 0,

ρ∗ =
ρ∗1
ρ∗2

=
β2

α2
σ2,

which yields the optimal penalized estimator of S2
n:

Σ∗2
n =

Σ2
n (ρ

∗
1, ρ

∗
2)

ρ∗2
= S2

n + ρ∗Iq.

If α2 = 0, take Σ∗2
n = σ2Iq (in that case we will just need to estimate σ2).

Figure 1. True covariance S2, sample covariance S2
n, and Σ2

n(ρ
∗
1, ρ

∗
2),Σ

2∗
n respectively regu-

larized and penalized sample covariance

.

In Figure 1, the scalar product is ⟨, ⟩H with its associated norm.We represent Σ2
n(ρ

∗
1, ρ

∗
2),

the optimal combination of S2
n and Iq defined by orthogonal projection of the true covari-

ance matrix S2 on the random vector-space generated by S2
n and Iq. Thus Σ

2∗
n = Σ2

n(ρ
∗, 1)
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Exponential bounds in high dimension 11

is the penalization of S2
n by Iq with ρ∗ =

ρ∗
1

ρ∗
2
. The green dashed line represents the set of

penalized estimators Σ2
n(ρ, 1) for which we obtain universal bounds in Theorem 2.3.

Theorem 2.3. Assume that Z has a general distribution with finite variance S2. As-
sume in addition that assumptions (A1) to (A3) hold. Then we have, for any n > 1, for
any q ≥ n, and for t > 2n,

P
(
T 2
n(ρ

∗, 1) ≥ (1 + a∗) t
)

= P
[
nZ̄ ′

nΣ
∗−2
n Z̄n ≥ (1 + a∗) t

]
≤ 2e3

9

(
t− n

2

)n
2 exp

(
− t−n

2

)
Γ
(
n
2 + 1

) ,

with a∗ = 1 + K3

ρ∗ .

Remark: Here the bounding function for large t behaves like a centered χ2 (n) dis-

tribution, up to the factor 2e3

9 . The term (1+ a∗) ensures that the smallest eigenvalue of
Σ∗2

n does not contribute to the inequality.
Notice that the inequality is still valid when using Σ2

n, the regularized version of S2
n

instead of the penalized version Σ∗2
n , up to a small modification of the bound (1 + a∗)t

by the factor 1/ρ∗2: for n > 1, q ≥ n, for any t > 2n

P
(
T 2
n (ρ∗1, ρ

∗
2) ≥

1

ρ⋆2
(1 + a∗) t

)
≤ 2e3

9

(
t− n

2

)n
2 exp

(
− t−n

2

)
Γ
(
n
2 + 1

) .

3. Inequality with estimated parameters

We have proved an exponential inequality for the penalized Hotelling’s T 2
n with theoretical

values a∗ and ρ∗. In practice these values are unknown. In this section, we estimate
these quantities and obtain an inequality for the penalized Hotelling’s T 2

n with estimated
parameters.

We first recall several results of Ledoit and Wolf (2000) [11] on the asymptotic behavior
of regularized empirical covariance estimator Σ2

n. Lemma 3.1 and proposition 3.1 below
summarize these results with our notations and are proved by Ledoit and Wolf (2000)
[11] in different lemmas and a theorem of their paper.

We use the same assumptions as in Ledoit and Wolf (2000) [11]:
L4−→ denotes the fourth-

moment convergence as n goes to infinity, i.e.

Un
L4−→ U ⇐⇒ E

[
(Un − U)

4
]
−→
n→∞

0.

Ledoit and Wolf (2000) [11] essentially have shown that L4-consistent estimators for σ2,
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α2, β2 and δ2 are simply given by their empirical counterparts that is

σ̂2
n =

〈
S2
n, Iq

〉
δ̂2n =

∥∥S2
n − σ̂2

nIq
∥∥2

α̂2
n = δ̂2n − β̂2

n

with β̄2
n = 1

n2

∑n
i=1

∥∥Zi(Zi)
′ − S2

n

∥∥2 and β̂2
n = min(β̄2

n, δ̂
2
n).

Lemma 3.1. [Ledoit and Wolf (2000) [11] lemma 3.2, lemma 3.3, lemma 3.4, lemma
3.5] Under assumptions (A1) to (A4), we have

1. σ2, α2 and β2 remain bounded (as n and q tend to ∞).

2. For all n, E
[
σ̂2
n

]
= σ2, and σ̂2

n − σ2 L4−→ 0 and σ̂4
n − σ4 L4−→ 0.

3. δ̂2n − δ2
L4−→ 0.

4. β̄2
n − β2 L4−→ 0 and β̂2

n − β2 L4−→ 0.

5. α̂2
n − α2 L4−→ 0.

After replacing the unobservable scalars σ2, α2, β2 and δ2 by their sample counterparts
in the formula of Σ2

n, Ledoit and Wolf obtained an estimation of the regularized empirical
covariance matrix say

Σ̂2
n =

β̂2
n

δ̂2n
σ̂2
nIq +

α̂2
n

δ̂2n
S2
n.

Ledoit and Wolf (2000) [11] have shown that Σ̂2
n and Σ2

n are asymptotically equivalent
in the modified Frobenius norm.

Proposition 3.1. [Ledoit and Wolf (2000) [11], Theorem 3.2] Under the assumptions
(A1)-(A4), we have

1. lim
n→∞

E
∥∥∥Σ̂2

n − Σ2
n

∥∥∥2 = 0.

2. Moreover, Σ̂2
n has the same asymptotic expected loss (or risk) as Σ2

n i.e.

lim
n→∞

E
∥∥∥Σ̂2

n − Σ2
∥∥∥2 − E

∥∥Σ2
n − Σ2

∥∥2 = 0.

In the same way as Ledoit and Wolf (2000) [11] we define the optimal coefficients ρ∗1

and ρ∗2. They are estimated respectively by ρ̂∗1 and ρ̂∗2, where ρ̂∗1 =
β̂2
n

δ̂2n
σ̂2
n and ρ̂∗2 =

α̂2
n

δ̂2n
.

Now, if α̂2
n ̸= 0, we introduce Σ̂2∗

n the ”estimated optimal” penalized version of S2
n given

by
Σ̂∗2

n = S2
n + ρ̂∗nIq,
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Exponential bounds in high dimension 13

where ρ̂∗n =
β̂2
nσ̂

2
n

α̂2
n

, that is,

Σ̂∗2
n = Σ2

n

(
ρ̂∗1
ρ̂∗2

, 1

)
.

Similarly the unobservable threshold constant a∗ introduced in theorem 2.3 is estimated
by â∗n = 1+ K3

ρ̂∗
n
. The principle in Figure 2 is similar to the one in Figure 1 except that Σ̂2

n

Figure 2. True covariance S2, sample covariance S2
n, regularized and penalized estimators

of S2
n, respectively Σ̂2

n and Σ̂∗2
n .

is determined first so that the regularized estimator belongs to the yellow line and the
optimal estimator Σ2

n = Σ2
n (ρ̂

∗
1, ρ̂

∗
2) is the closest value to S2 on this line. This difference

induces an additional error term in our inequalities.
Theorem 3.2 establishes an exponential bound for the penalized self-normalized sums,
when Σ∗2

n is replaced by the estimator Σ̂2∗
n and a∗ by â∗n, up to a small error term that

we control explicitly.

Theorem 3.2. Under the assumptions (A1) to (A4), we have, for any n > 1, for any
q > n, for any t > 2n and for any small value of ϵ > 0,

P
(
T 2
n(ρ̂

∗
n, 1) ≥ t (1 + â∗n + 2ϵ)

)
= P

(
nZ̄ ′

nΣ̂
∗−2
n Z̄n ≥ t (1 + â∗n + 2ϵ)

)
≤ 2e3

9

(
t− n

2

)n
2 e−

t−n
2

Γ
(
n
2 + 1

) + C (ϵ)

nϵ
, (5)

where â∗n = 1 + K3

ρ̂∗
n
, and C (.) is a real nonnegative function, independent of n, defined
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by

C (ϵ) = 4K1

√
K2

(
2 +

1

q
+K1

)
+ 2K1G

(√
ϵ

2K1

)
+
4K2

1σ
4

ϵ
G

(
ϵ

2σ2K1

)
+

K2
3

ϵ
G

(
ϵ

K3

)
.

The function G is defined explicitly in lemma 4.6. Notice that C(ϵ)/ϵ explodes when ϵ
goes to 0.

These results essentially show that we have a χ2(n) control in the tail of the distri-
bution, for a threshold larger than 2n(1 + â∗n) (recall that 2n is the variance of a χ2(n)
distribution). The loss (1 + â∗n) is essentially due to the correlation between the compo-
nents of Z and the deviation from homoscedasticity. The value of ϵ can not be too small
but can be optimized by balancing the two terms in the inequality. For a given ϵ and
a given level δ it is possible to solve numerically the second term of the inequality (5)
equal to delta to get a valid bound for the Hotelling’s T 2 for any n and q.

4. Simulations

In this section, we explore graphically for different distributions, how the dependence
structure of the observations and the distance to the homoscedastic framework impact
the penalization constants and the tail of the distribution.
We generate Gaussian random variables with a given covariance structure corresponding
respectively to the following scenarios:

• scenario a) the components Zi,j , j = 1, ..., q are independent with variance σj,j ,
that is Zi are i.i.d N(0, S2) with S2 = diag(σj,j)1≤j≤q for i = 1, ..., n. The σj,j are
themselves generated randomly in a LN(0, η2). We actually expect the variance of
the eigenvalues to have a strong influence on the penalized term. The variance η2

is calibrated for comparison with the dependent case and chosen equal to log(1 +√
1 + 4α2)− log(2) to ensure that the distance between S2 and σ2Iq is indeed equal

to α2 (which is chosen the same in the dependent case).
• scenario b) the r.v. Zi’s are i.i.d N(0, S2) with S2 given by a Toeplitz matrix of
the form

S2 =



1 s s2 · · · sq−2 sq−1

s 1 s
. . .

. . . sq−2

s2 s
. . .

. . .
. . .

...
...

. . .
. . . 1

. . . s2

sq−2 . . .
. . .

. . . 1 s
sq−1 sq−2 · · · s2 s 1


.
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Exponential bounds in high dimension 15

Up to a constant, this is the covariance matrix of a stationary AR(1) process with
auto-regressive parameter s. This parameter s is thus a dependence parameter
in ] − 1, 1[ allowing the components of the observations to exhibit more or less
dependence.

Notice that in our framework the quantity α2 is a measure of the complexity of the
problem. Actually, if α2 = 0, we can directly use the identity matrix instead of the
empirical variance and there is no need for penalizing. For this reason, we are going
to compare our simulation results for some given fixed values of α2 respectively in the
dependent and independent cases. For that, we now consider four simulation cases:

(i) scenario a) with α2 close to 1.10 (note that actually the value of α2 depends on q
but is close to this value in all simulations) corresponding to a standard deviation
η = 0.71;

(ii) scenario b) with the same values of α2 as in (i) corresponding to a dependence
parameter s = 0.6;

(iii) scenario a) with α2 equal respectively to 35.74, 55.63, 67.12, 74.19, 78.83, 82.04,
84.37, 86.13 corresponding to η between 1.89 and 2.11 respectively for the value of
q ∈ 50, 100, 150, 200, ..., 400;

(iv) scenario b) with the same values of α2 as in (iii) corresponding to a dependence
parameter s = 0.99.

For each set of parameters, (i) to (iv), for n ∈ {50, 75, 100, ..., 200}, we generate n r.v.’s
of size q ∈ {50, 100, 150, ..., 400} with q ≥ n. The procedure is repeated K = 999 times
independently to obtain Monte-Carlo approximations respectively of the distributions of
the penalized T 2

n-Hotelling’s statistic (with estimated parameters) and the distribution
of the penalizing parameter ρ̂∗n.

The graphics in Figure 3 compare the distribution of ρ̂∗ for case (i) (independent case,
first column) and case (ii) (dependent case, second column of the panel) respectively.
- on the first row: for fixed sample size n = 50 and varying q′s equal 50, 200 and 400,
- on the second row : for q = n equal to 50, 100, 200,
- on the last row shows this distribution when q = 2n and n is equal respectively to
50, 100, 200.
The figures in panel 3 show that the dependence structure tends to lead to smaller
penalization constants. By comparing the rows, it seems that there is a proportionality
between the penalization parameter ρ̂∗ and q/n.

In the independent case, it seems to be of the order 2q/n up to some factor probably
depending on the variance of the eigenvalues of the matrix. Notice that when q = n the
center of the distribution is rather stable but with a smaller variance as n grows. In the
dependent case, the ”optimal” penalization can decrease drastically even if the value of
α is fixed but is even more stable (in mean). This can be explained by the fact that we
have

α2 = ∥S2 − σ2Iq∥2 =
1

q

q∑
k=1

(
σ2
k − σ2

)2
+

2

q

q∑
k,j<k

cov2(Z1,k, Z1,j).

In the independent case, α2 is essentially the empirical variance of the eigenvalues. But
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Figure 3. Distributions of ρ̂∗, independent (first column, case (i)), dependent with s=0.6
(second column, case (ii)). Vertical lines represent the empirical mean of the corresponding
distribution.

in the dependent case, the covariance terms clearly increase which induces a reduction

of the penalizing term since ρ∗ = β2

α2σ
2.

Now, we focus on the distribution of the optimal penalization when there is a strong
dependent component. The graphics panel in Figure 4 compares the distribution of ρ̂∗ for
case (iii) (independent case, first column) and case (iv) (dependent case, second column)
respectively on the first row for fixed sample size n = 50 and varying q′s, on the second
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Exponential bounds in high dimension 17

row for q = n varying in 50, 100, 200. Finally, the last row shows this distribution when
q = 2n and n varies in 50, 100, 200. Figure 4 compares the distribution of the ”optimal”

Figure 4. Distributions of ρ̂∗, independent (first column, case (iii)), dependent with s=0.99
(second column, case (iv)) with the same α2. Vertical lines represent the empirical mean
of the corresponding distribution.

estimated penalty for identical values of α2 (depending on q) for the two scenarios, that
is, the left (i.i.d.) and the right column (dependent case) and for different values of q. α2

is equal respectively to 35.74, 55.63, 67.12, 74.19, 78.83, 82.04, 84.37, 86.13 for the values
of q equal to 50, 100, 150, 200, ..., 400. We see that, even for an identical value of α2, i.e.
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for a given distance between the true covariance matrix and the diagonal matrix, the
distribution of optimal penalty term is systematically more concentrated around smaller
values in the dependent case (second column). This conclusion is true for all values of
q and n. In other words, the stronger the dependence, the smaller the optimal penalty
term.
Recall that, in Figure 3, we consider a fixed value α2 = 1, 10 for all values of q. The
comparison of Figures 3 and 4 shows that when the α2 term is big, this leads to a smaller
penalization term. Furthermore, this penalization becomes smaller when q grows with n.
This is quite in contradiction with the practice which suggests using a penalization of
the order 2q/n as noticed in Figure 3. The distance to the homoscedastic framework has
thus a very strong impact on the penalty.
The following Figure 5 and Figure 6 give the histogram of the penalized Hotelling’s
statistic obtained by K = 999 Monte-Carlo simulations, respectively for the independent
and dependent case but with the same α2. We present first the case for s = 0.6 (Figure
5) and then the case s = 0.99 (Figure 6).
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Exponential bounds in high dimension 19

Figure 5. Distributions of T 2
n(ρ̂

⋆
n, 1), the penalized Hotelling’s statistic, in independent (first

column, case (i)) and dependent with s=0.6 frameworks (second column, case (ii)).

Compare figures 5 and 6, focusing first on the first column corresponding to the inde-
pendent case. We see the importance of the value α (the distance to homoscedasticity)
in the distribution. Increasing α2 tends to lead to a smaller penalization and to a less
precise approximation of the covariance matrix yielding a shift of the distribution of the
Hotelling’s statistic on the right. Comparing the two columns (independent and depen-
dent case), we see that the distributions are centered around quite similar values but
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Figure 6. Distributions of T 2
n(ρ̂

⋆
n, 1), the penalized Hotelling’s statistic, in independent (first

column, case (iii)) and dependent with s=0.99 frameworks (second column, case (iv))

tend to be more concentrated in the independent case. Increasing the value of α2 in
figure 6 tends to reverse this phenomenon. These figures also emphasize the role of the
ratio q/n.
Figures 7 and 8 show the comparison between the survival function of T 2

n(ρ̂
∗
n, 1)/(1+ â∗n),

the penalized Hotelling’s statistic reduced by 1+ â⋆n compared to the bound obtained in
the Theorem 3.2. These figures show clearly that the bounds we obtained are too con-
servative. Curiously the bounds seem to be better when the dependence is very strong.
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Exponential bounds in high dimension 21

Figure 7. Comparison of the true tail of the penalized Hotelling’s statistic and the tail
given by the bound for different values of n, q. s = 0.6 in the right column. The red dotted
lines refer to the bounds for the ordered corresponding n.
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Figure 8. Comparison of the true tail of the penalized Hotelling’s statistic and the tail
given by the bound for different values of n, q. s = 0.99 in the right column. The red dotted
lines refer to the bounds for the ordered corresponding n.

From this simulation study, we conclude that our bounds give some interesting infor-
mation both on the optimal penalty that one may choose and on the order of the bounds.
However, there is still room for improvement.
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Supplementary Material

Proofs of the theorems
(). In this supplementary material we provide all the proofs of the theorems given in
the paper entitled ”Exponential bounds for regularized Hotelling’s T 2

n statistic in high
dimension”

We set some notations that we will consider in the following proofs:
S2
n is a symmetric and diagonalizable matrix. Let’s denote by On an orthogonal matrix

in Mq (R) such that S2
n = O′

nΛ
2
nOn where Λ2

n is a diagonal matrix and for any q > n

Λ2
n =



λ1

. . .

λn

0
∖

0


.

Put Ŷi = OnZi with Ŷi =
(
Ŷi,1..., Ŷi,q

)′
. Let λ1 ≤ ... ≤ λq denote eigenvalues of S2

n and

v1, ..., vq their associated eigenvectors.

4.1. Proof of theorem 2.1 and 2.2

We first establish a simple inequality for the penalized Hotelling’s T 2
n in the symmetric

case, based on previous results by Pinelis [18]. The idea of the theorem is to use a rotation
trick of the Zi that allows us to return to the ”small” dimension case given by Pinelis.
This yields a bound given by the survival function of a χ2 with n degrees of freedom.

Proof of theorem 2.1. Note that Vectors Ŷi remain symmetric in distribution and
uncorrelated. It is easy to see that, by construction, the empirical covariance matrix of
the Ŷ1, ..., Ŷn is

1

n

n∑
i=1

ŶiŶ
′
i =

1

n

n∑
i=1

OnZiZ
′
iO

′
n = OnS

2
nO

′

n = Λ2
n.

This implies that, for any vector Ŷi, their coordinates for j ≥ n + 1 are zero. Indeed,
for j ≥ n + 1, n−1

∑n
i=1 Ŷ

2
i,j = 0, implies in turn that each Ŷi,j = 0, for j = n + 1, ..., q

and i = 1, ..., n. Define Ỹi the n-dimensional vector version of Ŷi with these non-zero
components, that is to say ∀j ≤ n, Ỹi,j = Ŷi,j and their corresponding empirical mean
¯̃Yn on the collection Ỹ (n) =

(
Ỹi

)
1≤i≤n

.
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Thus, for all ρ2 > 0, we have:

nZ̄ ′
nΣ

−2
n (ρ1, ρ2) Z̄n = n

(
1

n

n∑
i=1

Ŷ ′
i

)(
ρ1Iq + ρ2Λ

2
n

)−1

(
1

n

n∑
i=1

Ŷi

)

= n

n∑
j=1

(
n−1

∑n
i=1 Ŷi,j

)2
ρ1 + ρ2λj

= n

n∑
j=1

(
n−1

∑n
i=1 Ŷi,j

)2
ρ2λj

ρ2λj

ρ1 + ρ2λj

≤ n
n∑

j=1

(
n−1

∑n
i=1 Ŷi,j

)2
ρ2λj

≤ 1

ρ2

n∑
j=1

(
n−1/2

∑n
i=1 Ŷi,j

)2
λj

.

As λj = n−1
∑n

i=1 Ŷ
2
i,j , we have reduced the problem to the sum of n self normalized

sums, which can be seen as Hotelling’s T 2
n of symmetric random variables in Rn. In other

words, nZ̄ ′
nΣ

−2
n (ρ1, ρ2) Z̄n ≤ 1

ρ2
n ¯̃Y ′

nS
−2
n

(
Ỹ (n)

)
¯̃Yn. Thus, by applying Pinelis’ equation

(1) [18], we have

∀t > 0, P
(
nZ̄ ′

nΣ
−2
n Z̄n ≥ t/ρ2

)
≤ 2e3

9
F̄n (t) .

Recall that, if N1, ..., Nn are independent N(0, 1) random variables, then by Lemma
1 of Laurent and Massart (2000) [10], one has, for u > 0,

P
(∑n

i=1 N
2
i − n√

2n
≥

√
2(
√
u+

u√
n
)

)
≤ e−u .

By inverting the polynomial in
√
u, this is a Bernstein type inequality for i.i.d random

variables

P
(∑n

i=1 N
2
i − n√

2n
≥ ν

)
≤ exp

− 2ν2(
1 +

√
1 + 2

√
2 ν√

n

)2


≤ exp

(
− ν2

2(1 +
√
2 ν√

n
)

)
.
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Il follows that, for t > n,

F̄n (t) = P
(∑n

i=1 N
2
i − n√

2n
≥ t− n√

2n

)
≤ exp

(
− (t− n)2

4t

)
.

Proof of theorem 2.2.
Recall that : Z̄n = 1

n

∑n
i=1 Zi with Zi ∈ Rq. Introduce independent Rademacher r.v.’s

εi taking the values ±1 with probability 1/2. Define Z̄ϵ
n = 1

n

∑n
i=1 ϵiZi. Then, in the

symmetric case considered here, Z̄n and Z̄ϵ
n have the same distribution. Now write

nZ̄ϵ ′
n Σ−2

n (ρ1, ρ2) Z̄
ϵ
n = n

(
1

n

n∑
i=1

ϵiŶ
′
i

)(
ρ1Iq + ρ2Λ

2
n

)−1

(
1

n

n∑
i=1

ϵiŶi

)

=
1

n
ϵ′Ŷ

(
ρ1Iq + ρ2Λ

2
n

)−1
Ŷ ′ϵ

= ϵ′V V ′ϵ (6)

where Ŷ = (Ŷ1, . . . , Ŷn)
′ and V = 1√

n
Ŷ
(
ρ1Iq + ρ2Λ

2
n

)−1/2
.

Chasapis and al (2022) [4] obtain an extension of Pinelis’ result [18] stating that for
smooth functions of quadratic forms, Rademacher variables may be replaced by standard
normal variables. More precisely, define the Euclidian norm ∥x∥2 =

√
⟨x, x⟩ and consider

ξ1, ..., ξn independent standard Gaussian random variables. Then, for any t ≥ 0, for any
vectors ν1, ..., νn in Rq, we have

P [∥ϵ1ν1, ..., ϵnνn∥2 ≥ t] ≤ CP [∥ξ1ν1, ..., ξnνn∥2 ≥ t] (7)

with C = 3824
Since we have

ϵ1ν1, ..., ϵnνn = ϵ′V

where V is the matrix of vectors νi = (ν1,1, ..., ν1,q) corresponding to the rows, we can
rewrite

∥ϵ1ν1, ..., ϵnνn∥22 = ∥ϵ′V ∥22 = ϵ′V V ′ϵ.

It follows that, for any u > 0,

P [ϵ′V V ′ϵ ≥ u] ≤ CP [ξ′V V ′ξ ≥ u]

By conditioning according to Ŷi’s and using equation (6), we have, for any u > 0 and,
for any ρ1, ρ2 > 0,
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P
[
nZ̄ϵ ′

n Σ−2
n (ρ1, ρ2) Z̄

ϵ
n ≥ u

]
= E

[
P
(
ϵ′V V ′ϵ ≥ u | Ŷ1, ..., Ŷn

)]
≤ CE

[
P
(
ξ′V V ′ξ ≥ u | Ŷ1, ..., Ŷn

)]
.

Moreover recall from the preceding proof that we have

nZ̄ϵ ′
n Σ−2

n (ρ1, ρ2) Z̄
ϵ
n = n

(
1

n

n∑
i=1

ϵiŶ
′
i

)(
ρ1Iq + ρ2Λ

2
n

)−1

(
1

n

n∑
i=1

ϵiŶi

)

= n

inf(q,n)∑
j=1

(
n−1

∑n
i=1 ϵiŶi,j

)2
ρ1 + ρ2λj

= n

inf(q,n)∑
j=1

(
n−1

∑n
i=1 ϵiŶi,j

)2
λj

λj

ρ1 + ρ2λj

We obtain

P
[
nZ̄ϵ ′

n

(
Σ2

n (ρ1, ρ2)
)−1

Z̄ϵ
n > u

]
≤

CE

P
n

inf(q,n)∑
j=1

(
n−1

∑n
i=1 ξiŶi,j

)2
λj

λj

ρ1 + ρ2λj
> u | Ŷ1, ..., Ŷn


 . (8)

Let us work now conditionally to Ŷ1, ..., Ŷn. Put Kj =
√
n
(
n−1

∑n
i=1 ξiŶi,j

)
/
√

λj for

j = 1, .., inf(q, n). Thus for any j ̸= k

Cov(Kj ,Kk | Ŷ1, ..., Ŷn) = Cov

(
√
n
n−1

∑n
i=1 ξiŶi,j√
λj

,
√
n
n−1

∑n
i=1 ξiŶi,k√
λk

| Ŷ1, ..., Ŷn

)

=
1

n

n∑
i=1

Ŷi,j Ŷi,k√
λjλk

= 0.

Since K =
(
K1, ...,Kinf(q,n)

)
is a Gaussian vector (as a linear combination of independent

variables) it follows that K2
1 , ..., K

2
inf(q,n) are iid χ2(1).

Now, consider the vector b = (b1, ..., bq) with nonnegative components (conditionally

to Ŷi,j ’s) defined by

bj =
λj

ρ1 + ρ2λj
.

A direct application of Laurent and Massart, lemma [10] to
∑inf(q,n)

j=1 bj
(
K2

j − 1
)
gives

for any u > 0

imsart-bj ver. 2014/01/08 file: output.tex date: February 9, 2023



Exponential bounds in high dimension 27

P

inf(q,n)∑
j=1

bj
(
K2

j − 1
)
> 2∥b∥2

√
u+ 2∥b∥∞u

 ≤ exp (−u) .

In other words, for any u > 0, we have

P

(∑inf(q,n)
j=1 bjK

2
j − ∥b∥1√

2∥b∥22
>

√
2
√
u+

√
2
∥b∥∞
∥b∥2

u

)
≤ exp (−u) (9)

Now by combining (8) and (9) we obtain the following result for the recentered version
of our quantity of interest,

P

(
nZ̄ϵ ′

n Σ−2
n (ρ1, ρ2) Z̄

ϵ
n − ∥b∥1√

2∥b∥22
>

√
2
√
u+

√
2
∥b∥∞
∥b∥2

u

)

≤ CE

[
P

(∑inf(q,n)
j=1 bjK

2
j − ∥b∥1√

2∥b∥22
>

√
2
√
u+

√
2
∥b∥∞
∥b∥2

u

)
|
(
Ŷi,j

)
i=1,...,n j=1,...,inf(q,n)

]

≤ C exp(−u).

The result of the theorem follows by noticing that ∥b∥i = Θi(λ, ρ1, ρ2), i = 1, 2,∞.

4.2. Proof of theorem 2.3

4.2.1. A symmetrization lemma adapted to χ2 distribution

The following lemma ensures that, if we have a χ2 (k) type of control for the tail of a
random variable ν, which stochastically dominates some random variable ξ, then we are
also able to control the tail of ξ. For large values, this tail is essentially the same as the
one of a χ2(k) distribution. We use exactly the same ideas as in Panchenko’s lemma 1
and corollary 1 (which assumes an exponential control of the tail of the distribution of
the variable ν).

Lemma 4.1. Let ν and ξ be two real r.v.’s. For a ∈ R, put Φa(x) = max (x− a; 0).
Assume that:

(i) for any a ∈ R,
EΦa (ξ) ≤ EΦa (ν)
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(ii) there exists k and constants C1 > 0, c1 > 0, such that for any t > 0

P (ν ≥ t) ≤ C1F̄k (c1t)

then, for t > 2k/c1, we have

P (ξ ≥ t) ≤ C1

(
c1t− k

2

) k
2 e−

c1t−k
2

Γ
(
k
2 + 1

)
and, for t > k/c1, we also get

P (ξ ≥ t) ≤ C1F̄k+2 (c1t− k) .

Proof of lemma 4.1 . We follow the lines of the proof of Panchenko’s lemma, with a
function Φa with a = t− k

c1
given by Φ (x) = max (x− t+ k/c1; 0) , for t > k/c1. Remark

that Φ (x) is convex, nondecreasing and that Φ (0) = 0 and Φ (t) = k/c1. We thus have
by Markov’s inequality

P (ξ ≥ t) ≤ EΦ (ξ)

Φ (t)
≤ EΦ (ν)

Φ (t)

≤ 1

Φ (t)

(
Φ (0) +

∫ +∞

t−k/c1

Φ′ (x)P (ν ≥ x) dx

)

≤ C1
c1
k

∫ +∞

t−k/c1

F k (c1x) dx.

By integration by parts, we get∫ +∞

t−k/c1

F̄k (c1x) dx =

∫ +∞

t−k/c1

c1xfk (c1x) dx− (t− k/c1)

∫ +∞

t−k/c1

c1fk (c1x) dx.

Recall that

fk(u) =
1

2k/2Γ(k2 )
u

k
2−1 exp(−u

2
),

we thus have

c1
k

∫ +∞

t−k/c1

c1xfk (c1x) dx =
c1

2k/2+1 k
2Γ(

k
2 )

∫ +∞

t−k/c1

(c1x)
k+2
2 −1 exp(−c1x

2
)dx

= F k+2 (c1t− k) .

It follows by straightforward calculations that, for t > k/c1,

P (ξ ≥ t) ≤ C1

(
F k+2 (c1t− k)− c1t− k

k
F k (c1t− k)

)
.
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Using the recurrence relation 26.4.8 of Abramovitch and Stegun ([1], page 941), for
u ≥ 2k,

C1

(
F k+2 (u− k)− u−k

k F k (u− k)
)

≤ C1

(
F k+2 (u− k)− F k (u− k)

)
≤

(
(u−k)

2

)k/2
C1e

− (u−k)
2

Γ( k
2+1)

.

We get with u = c1t, for t ≥ 2k/c1,

P (ξ ≥ t) ≤
(
(c1t− k)

2

)k/2
C1e

− (c1t−k)
2

Γ
(
k
2 + 1

) .

Moreover, for t > k/c1 we have P (ξ ≥ t) ≤ C1

(
F k+2 (c1t− k)

)
. Notice that we only

loose 2 degrees of freedom in this case. It will not be important if k is large, typically of
the order of n in our case.

4.2.2. Extension of Panchenko symmetrization lemma (see [17] Corollary 1, p. 2069)

Let Jq = {u ∈ Rq, ∥u∥2 = 1} be the unit circle of Rq. Let X(n) = (Xi)1≤i≤n be an inde-

pendent copy of Z(n) = (Zi)1≤i≤n.

Since q > n, the matrix S2
n

(
Z(n) −X(n)

)
= 1

n

∑n
i=1 (Zi −Xi) (Zi −Xi)

′
is not invert-

ible. We derive from S2
n

(
Z(n) −X(n)

)
the corresponding penalized empirical covariance

matrix

Σ̃2
n = 2ρ1Iq + ρ2S

2
n

(
Z(n) −X(n)

)
It is easy to see that

E
(
S2
n

(
Z(n) −X(n)

))
= 2S2 and E

(
S2
n

(
Z(n) −X(n)

)
| Z(n)

)
= S2

n + S2.

Since Σ̃2
n = ρ̃1Iq + ρ̃2S

2
n

(
Z(n) −X(n)

)
, we get that

E
(
Σ̃2

n | Z(n)
)
= ρ̃1Iq + ρ̃2

(
S2
n + S2

)
= 2ρ1Iq + ρ2

(
S2
n + S2

)
.

As a consequence, define

β̃2 = E
(∥∥∥S2

n

(
Z(n) −X(n)

)
− 2S2

∥∥∥2)
= E

(∥∥∥S2
n

(
Z(n)

)
− S2

∥∥∥2)+ E
(∥∥∥S2

n

(
X(n)

)
− S2

∥∥∥2)
= 2β2.
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Similarly, put
α̃2 = 2α2; δ̃ = 2δ2 and σ̃2 =

〈
2S2, In

〉
= 2σ2

then we have

ρ̃1 =
α̃2

δ̃2
σ̃2 = 2

α2

δ2
σ2 = 2ρ1

and

ρ̃2 =
β̃2

δ̃2
=

β2

δ2
= ρ2

It thus follows with this natural choice of ρ̃1 and ρ̃2 that we have

E
(
Σ̃2

n | Z(n)
)
= Σ2

n +Σ2

E
(
Σ̃2

n

)
= 2(ρ1Iq + ρ2S

2) = 2Σ2

The following lemma and its proof is an extension of corollary 1 of Panchenko (2003)
(see [17]) with some adaptations to the multidimensional χ2 case. See also Bertail et al.
(2008) [2] for the non penalized version of this result for q < n.

Lemma 4.2. If there exists k ∈ N∗, C2 > 0 and c2 > 0 such that, for all t ≥ 0,

P

 sup
u∈Jq

√
nu′ (Z̄n − X̄n

)√
u′Σ̃2

nu

 ≥
√
t

 ≤ C2F̄k(c2t),

then, for all t ≥ 2k/c2,

P

(
sup
u∈Jq

( √
nu′Z̄n√

u′ (Σ2
n +Σ2)u

)
≥

√
t

)
≤ C2

(
(c2t− k)

2

)k/2
e−

(c2t−k)
2

Γ
(
k
2 + 1

)
and, for all t ≥ k/c2,

P

(
sup
u∈Jq

( √
nu′Z̄n√

u′ (Σ2
n +Σ2)u

)
≥

√
t

)
≤ C2F k+2 (c2t− k)

Proof of Lemma 4.2 . Denote

An

(
Z(n)

)
= n sup

u∈Jq

sup
b>0

{
E
[
4b
(
u′ (Z̄n − X̄n

)
− bu′Σ̃2

nu
)
| Z(n)

]}
and

Cn

(
Z(n), X(n)

)
= n sup

u∈Jq

sup
b>0

{
4b
(
u′ (Z̄n − X̄n

)
− bu′Σ̃2

nu
)}
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We have by Jensen’s inequality, that for any convex function ϕ

ϕ
(
An

(
Z(n)

))
≤ E

[
ϕ
(
Cn

(
Z(n), X(n)

))
| Z(n)

]
(10)

Finally, we can rewrite An

(
Z(n)

)
and Cn

(
Z(n), X(n)

)
in an explicit form of self-

normalized sums by maximizing according to b, the two expressions above, which leads
to

An

(
Z(n)

)
= sup

u∈Jq


( √

nu′Z̄n√
ρ̃1 + ρ̃2u′ (S2

n + S2)u

)2


= sup
u∈Jq


( √

nu′Z̄n√
u′Σ2

nu+ u′Σ2u

)2


Similarly, we have

Cn

(
Z(n), X(n)

)
= sup

u∈Jq


√

nu′ (Z̄n − X̄n

)√
u′Σ̃2

nu

2


Now we conclude by applying lemma 1 to the inequality (10) with these expressions
of An

(
Z(n)

)
and Cn

(
Z(n), X(n)

)
with C2 = C1 and c2 = c1.

Proof of theorem 2.3 . We now control the Hotelling’s T 2
n in the general case, by

cutting its distribution tail into two parts. The first part allows us to get back to the

expression above sup
u∈Jq

{( √
nu′Z̄n√

u′Σ2
nu+u′Σ2u

)2
}

controlled by Lemma 2. The second term

is controlled by the largest eigenvalue of S2.

Let

Bn = sup
u∈Jq

{
u′Z̄n√
u′Σ2

nu

}
.

Notice that by construction we have, for any t > 0, (and particularly for any t > 2n){
nZ̄ ′

nΣ
−2
n Z̄n ≥ t

}
=
{
n1/2Bn ≥

√
t
}
.

To transform the penalized self-normalised sum from the expression nZ̄ ′
n

(
Σ2

n

)−1
Z̄n to

its ”pseudo” version with the wrong normalization, sup
u∈Jq

{( √
nu′Z̄n√

u′Σ2
nu+u′Σ2u

)2
}
, let us

introduce Dn defined by
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Dn = sup
u∈Jq

{√
1 +

u′Σ2u

u′Σ2
nu

}
= sup

u∈Jq

{√
1 +

u′ (ρ1Iq + ρ2S2)u

u′ (ρ1Iq + ρ2S2
n)u

}
.

First, notice that we have

√
n
Bn

Dn
= sup

u∈Jq

{
u′Z̄n√
u′Σ2

nu

}
inf

u∈Jq

{(√
1 + u′Σ2u

u′Σ2
nu

)−1
}

≤ sup
u∈Jq

(
u′Z̄n√
u′Σ2

nu

(√
1 + u′Σ2u

u′Σ2
nu

)−1
)

≤

√√√√ sup
u∈Jq

{( √
nu′Z̄n√

u′Σ2
nu+u′Σ2u

)2
}
, (11)

for which we have an exponential bound by Lemma 4.2 and theorem 2.1.
Thus by splitting the probability according to the event {D2

n ≥ 1 + a}, for a > 1 and,
for any t > 2n, we have

P
(
nZ̄ ′

nΣ
−2
n Z̄n ≥ t

)
≤ P

(
Bn ≥

√
t

n
, Dn ≤

√
1 + a

)
+ P

(
Dn ≥

√
1 + a

)
≤ P

(
Bn

Dn
≥

√
t

n (1 + a)

)
+ P

(
Dn ≥

√
1 + a

)
. (12)

So now, it remains to treat the second term in the right-hand side of inequality (12).
Notice that we have, for a > 1,

{
Dn ≥

√
1 + a

}
=

{
sup
u∈Jq

(
u′Σ2u
u′Σ2

nu

)
≥ a

}
=

{
inf

u∈Jq

(
u′Σ2

nu
u′Σ2u

)
≤ 1

a

}
.

First, if S2 = σ2Iq is diagonal, then we have

u′Σ2u = u′(ρ1Iq + ρ2σ
2Iq)u = ρ1 + ρ2σ

2.

Since
inf

u∈Jq

(
u′Σ2

nu
)
= inf

u∈Jq

(
u′(ρ1Iq + ρ2S

2
n

)
u) = ρ1,

if we choose a such that a > (ρ1 + ρ2σ
2)/ρ1, then we have

P
{
Dn ≥

√
1 + a

}
≤ P

 inf
u∈Jq

(
u′Σ2

nu
)

ρ1 + ρ2σ2
≤ 1

a

 = 0.
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Remark that, in this case, we have ρ∗1 = σ2 and ρ∗2 = 0 and it follows that the inequality is
true for any a > 1. Notice that the proximity between S2 and σ2Iq is precisely controlled
by the term α2 =

∥∥S2 − σ2Iq
∥∥ .

Now consider the general case. First, notice that

inf
u∈Jq

(
u′Σ2

nu

u′Σ2u

)
= inf

u∈Jq

(
u′Σ−1Σ2

nΣ
−1u

)
= inf

u∈Jq

(
u′Σ−1

∥Σ−1u∥2
Σ2

n

Σ−1u

∥Σ−1u∥2

∥∥Σ−1u
∥∥2
2

)
≥ inf

v∈Jq

(
v′Σ2

nv
)
× inf

u∈Jq

(
u′Σ−2u

)
, with v =

Σ−1u

∥Σ−1u∥2
≥ ρ1µ1(Σ

−2) =
ρ1

µq(Σ2)
.

Now, using the optimal values ρ∗1 and ρ∗2, we have the decomposition

Σ2 (ρ∗1, ρ
∗
2) = ρ∗1Iq + ρ∗2S

2.

It follows that we get
µq(Σ

2 (ρ∗1, ρ
∗
2)) = ρ∗1 + ρ∗2µq(S

2)

and

inf
u∈Jq

(
u′Σ2

n (ρ
∗
1, ρ

∗
2)u

u′Σ2 (ρ∗1, ρ
∗
2)u

)
≥ ρ∗1

ρ∗1 + ρ∗2µq(S2)
.

It follows that if we choose a such that

1

a
<

1

1 +
µq(S2)

ρ∗

and, since a∗ = 1 + K3

ρ∗ > 1 +
µq(S2)

ρ∗ by the assumption (A3), then, if a ≥ a∗, we get

P
(
Dn ≥

√
1 + a

)
= 0. (13)

As a consequence, we obtain an exponential inequality for any value a ≥ a∗. Combining
(12) and (13), we get, for any a ≥ a∗,

∀t > 2n, P
(
nZ̄ ′

nΣ
−2
n Z̄n ≥ t (1 + a)

)
≤ P

(√
n
Bn

Dn
≥

√
t

)
. (14)

Let X(n) = (Xi)1≤i≤n be an independent copy of Z(n) = (Zi)1≤i≤n. Applying theorem
2.1 to (Zi −Xi)1≤i≤n which is symmetric, we obtain

P

 sup
u∈Jq

√
nu′ (Z̄n − X̄n

)√
u′Σ̃2

nu

 ≥
√
t

 ≤ 2e3

9
F̄n (t) ,
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Thus, applying the lemma 4.2 to the inequality above implies that, for all t ≥ 2n,

P

(
sup
u∈Jq

( √
nu′Z̄n√

u′ (Σ2
n +Σ2)u

)
≥

√
t

)
≤ 2e3

9

(
(t− n)

2

)n/2
e−

(t−n)
2

Γ
(
n
2 + 1

) . (15)

Finally by combining expressions (11), (14) and (15), the result holds.

4.3. Proof of Theorem 3.2

The following lemmas will allow us to control explicitly the deviation P
[∣∣∣ 1

ρ̂∗
n
− 1

ρ∗

∣∣∣ > ϵ
]

for small positive values of ϵ.

Lemma 4.3. (Inversion) Let w > 0, and consider (Wn)n≥1 a sequence of positive
random variables. Assume that there exists a nonnegative constant C3, such that ∀ϵ >
0,∃N > 0,∀n > N ,

P (|Wn − w| > ϵ) ≤ C3

n

1

ϵ2
.

Then there exists a function C3;1/w nonnegative, such that ∀ϵ > 0,∀n > N

P
(∣∣∣∣ 1

Wn
− 1

w

∣∣∣∣ > ϵ

)
≤

C3;1/w (ϵ)

nϵ2
,

where C3;1/w (ϵ) = C3

w4

(
1 + (wϵ)

2/5
)5

.

Proof of Lemma 4.3 . Since w > 0, we have

P
(∣∣∣∣ 1

Wn
− 1

w

∣∣∣∣ > ϵ

w

)
= P

(∣∣∣∣ w

Wn
− 1

∣∣∣∣ > ϵ

)
Now, ∀η ∈ ]0, w[ we get

P
(∣∣∣∣ 1

Wn
− 1

w

∣∣∣∣ > ϵ

w

)
≤ P

(∣∣∣∣ w

Wn
− 1

∣∣∣∣ > ϵ, |Wn − w| ≤ η

)
+ P (|Wn − w| > η)

≤ (I) + (II).

On the interval [w − η;w + η], f : x 7→ w
x is Lipschitz with

∀x ∈ [w − η;w + η] , |f ′ (x)| ≤ w

(w − η)
2 ,

thus we obtain

∀Wn ∈ [w − η;w + η] ,

∣∣∣∣ w

Wn
− 1

∣∣∣∣ ≤ w

(w − η)
2 |Wn − w| .
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∀η ∈ ]0;w[ , (I) ≤ P

(
w

(w − η)
2 |Wn − w| > ϵ

)
≤ C3

n
× w2

ϵ2 (w − η)
4

and since

∀η ∈ ]0;w[ , (II) ≤ C3

n
× 1

η2
,

it follows that

P
(∣∣∣∣ 1

Wn
− 1

w

∣∣∣∣ > ϵ

w

)
≤ C3

n
× w2

ϵ2 (w − η)
4 +

C3

n
× 1

η2

≤ C3

n
min

η∈]0;w[

{
w2

ϵ2
(
1− η

w

)4
w4

+
1

w2
(
η
w

)2
}

α= η
w

≤ C3

nw2
min

α∈]0;1[

{
1

ϵ2 (1− α)
4 +

1

α2

}

≤ C3

nw2
min

α∈]0;1[

{
1

ϵ2 (1− α)
4 +

1

α4

}

≤ C3

nw2

(
1 + ϵ−2/5

)5
.

Setting ϵ′ = ϵ
w and C3;1/w (ϵ′) = ϵ′2 × C3

w2

(
1 + (wϵ′)

−2/5
)5

= C3

w4

(
1 + (wϵ′)

2/5
)5

, the

result holds.

Lemma 4.4. (Product) Consider u, v two positive scalars, and (Un), (Vn) some

random sequences. Assume that there exists nonnegative constants C̃4 and C̆4 such that
∀ϵ > 0,∀n ≥ 1 :

P (|Un − u| > ϵ) ≤ C̃4

n

1

ϵ2
and P (|Vn − v| > ϵ) ≤ C̆4

n

1

ϵ2
.

Then there exists a function C4;uv such that ∀ϵ > 0,

P (|UnVn − uv| > ϵ) ≤ C4;uv (ϵ)

n

1

ϵ2
,

where C4;uv (ϵ) = C̃4

(
2uv+ϵ

u

)2
+ C̆4 (2u)

2
is a positive function of ϵ depending on u, v,

C̃4 and C̆4.
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Proof of Lemma 4.4. By straightforward inequalities, we get

P (|UnVn − uv| > ϵ) = P (|UnVn − uVn + uVn − uv| > ϵ)

≤ P
(
Vn |Un − u| > ϵ

2
, u |Vn − v| ≤ ϵ

2

)
+ P

(
u |Vn − v| > ϵ

2

)
≤ P

((
v +

ϵ

2u

)
|Un − u| > ϵ

2

)
+ P

(
|Vn − v| > ϵ

2u

)
≤ P

(
|Un − u| > ϵu

2uv + ϵ

)
+ P

(
|Vn − v| > ϵ

2u

)
≤ C̃4

n

(
2uv + ϵ

ϵu

)2

+
C̆4

n

(
2u

ϵ

)2

≤ C4;uv (ϵ)

n

1

ϵ2
.

Lemma 4.5. Proximity between σ2, α2, β2, δ2 and their estimators
∀n ≥ 1 and ∀ϵ > 0, we have :

• for σ̂2
n and σ2:

P
(∣∣σ̂2

n − σ2
∣∣ > ϵ

)
≤

√
K2

n

1

ϵ2
.

• for δ̂2n and δ2:

P
(∣∣∣δ̂2n − δ2

∣∣∣ > ϵ
)
≤ Cδ2

nϵ2
,

with

Cδ2 = 2K4 + (100 +K2
1 )K2 + 24

√
6K

5/4
2 + 4K

3/2
2 + 223K2

2

+4K
1/2
2

(
K

1/4
2 + 2

√
6
)√

K2
1K2 + 4K2 (1 + 3K2) + 2K4

• for β̂2
n and β2:

P
(∣∣∣β̂2

n − β2
∣∣∣ > ϵ

)
≤

Cβ2 (ϵ)

nϵ2
,

with Cβ2 (ϵ) = 4K2
1

√
K2 + Cδ2 + 2K1

√
K2 ϵ.

• for α̂2
n and α2:

P
(∣∣α̂2

n − α2
∣∣ > ϵ

)
≤ Cα2 (ϵ)

nϵ2
,

with Cα2(ϵ) = 23Cδ2 + 24K2
1

√
K2 + 22K1

√
K2 ϵ.
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Proof of Lemma 4.5.
Consider σ̂2

n and σ2.

Recall that σ̂2
n = 1

q

∑q
j=1

(
1
n

∑n
i=1 y

2
ij

)
and σ2 = 1

q

∑q
j=1 E

[
y21j
]
= 1

q

∑q
j=1 µj .

Following the ideas of Ledoit and Wolf [11] who obtain the convergence of the fourth
order moment, we rather control the second order moment as follows :

E
[(
σ̂2
n − σ2

)2]
= E


1

q

q∑
j=1

1

n

n∑
i=1

(
y2ij − µj

)2


= E


 1

n

n∑
i=1

1

q

q∑
j=1

(
y2ij − µj

)2


=
1

n2

n∑
i1=1

n∑
i2=1

E

1
q

q∑
j=1

(
y2i1j − µj

)
× 1

q

q∑
j=1

(
y2i2j − µj

) .

This last expression is equal to zero for any i1 ̸= i2 because of the independence between
observations. Thus we get

E
[(
σ̂2
n − σ2

)2]
=

1

n2

n∑
i=1

E


1

q

q∑
j=1

(
y21j − µj

)2


=
1

n
E


1

q

q∑
j=1

(
y21j − µj

)2


=
1

n

E


1

q

q∑
j=1

y21j

2
−

E

1
q

q∑
j=1

y21j

2


≤ 1

n
E


1

q

q∑
j=1

y21j

2
 ≤ 1

n

E


1

q

q∑
j=1

y21j

4



1/2

≤ 1

n

1

q

q∑
j=1

E
[
y81j
]1/2

.

Therefore, using the second assumption (A2), one gets

E
[(
σ̂2
n − σ2

)2] ≤ √
K2

n
. (16)
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Finally, we have by Markov inequality the bound

P
[∣∣σ̂2

n − σ2
∣∣ > ϵ

]
≤

E
[(
σ̂2
n − σ2

)2]
ϵ2

≤
√
K2

nϵ2
.

Consider δ̂2n and δ2.
Combining the expressions (A.2) and (A.3) on page 394 in Ledoit and Wolf ([11]) we get

δ̂2n − δ2 =
(
σ̂2
n − σ2

)2 − 2σ2
(
σ̂2
n − σ2

)
+
∥∥S2

n

∥∥2 − E
(∥∥S2

n

∥∥2) . (17)

Similarly using their expressions, from page 394 (A.4) to page 399, and page 390 (A.1),
we have respectively the inequalities

Var
(∥∥S2

n

∥∥2) ≤ 1

n

(
K2

1K2 + 4K2 (1 + 3K2) + 2K4

)
σ2 ≤

√
K2. (18)

Combining these expressions with Bienaymé-Tchebychev, Markov and Cauchy-Schwartz

inequalities, we obtain a control of P
(∣∣∣δ̂2n − δ2

∣∣∣ > ϵ
)

by a function of n, ϵ, A2, A4 and

Var(∥S2
n∥2) where Ak = E

(∣∣σ̂2
n − σ2

∣∣k). Indeed we have, for all ϵ > 0,

P
(∣∣∣δ̂2n − δ2

∣∣∣ > ϵ
)

≤ 1

ϵ2
E
((

δ̂2n − δ2
)2)

≤ 1

ϵ2

{
E
[(
σ̂2
n − σ2

)4]
+ 4σ4E

[(
σ̂2
n − σ2

)2]
+E

[(∥∥S2
n

∥∥2 − E
∥∥S2

n

∥∥2)2]
+4σ2E

[∣∣σ̂2
n − σ2

∣∣3]+ 4σ2E
[∣∣σ̂2

n − σ2
∣∣ (∥∥S2

n

∥∥2 − E
(∥∥S2

n

∥∥2))]
+ 2E

[(
σ̂2
n − σ2

)2 ∣∣∣∥∥S2
n

∥∥2 − E
(∥∥S2

n

∥∥2)∣∣∣]}
≤ 1

ϵ2

{
A4 + 4σ4A2 +Var

(∥∥S2
n

∥∥2)+ 4σ2
√
A2A4

+ 4σ2

√
A2Var

(
∥S2

n∥
2
)
+ 2

√
A4Var

(
∥S2

n∥
2
)}

.

Now by some previous controls established by Ledoit and Wolf ([11], page 394) we have

A4 ≤ 96K2

n
,

Var
(∥∥S2

n

∥∥2) ≤ 1

n

(
K2

1K2 + 4K2 (1 + 3K2) + 2K4

)
=

1

n
K
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and
σ2 ≤

√
K2.

Using the control stated in (16), A2 ≤
√
K2/n, we can easily get the explicit constant

Cδ2 as a function of K1, K2, and K4.
For all ϵ > 0, for all n ∈ N∗, we have

P
(∣∣∣δ̂2n − δ2

∣∣∣ > ϵ
)

≤ 1

nϵ2

[
96K2 + 4K2K

1/2
2 +K + 4K

1/2
2

√
96K

1/2
2 K2

+4K
1/2
2

√
K

1/2
2 K + 2

√
96K2K

]
≤ 1

nϵ2

{
2K4 + (100 +K2

1 )K2 + 24
√
6K

5/4
2 + 4K

3/2
2 + 223K2

2

+4K
1/2
2

(
K

1/4
2 + 2

√
6
)√

K2
1K2 + 4K2 (1 + 3K2) + 2K4

}
≤ Cδ2

nϵ2
.

Consider β̂2
n and β2.

Since δ2 = α2 + β2 yielding δ2 ≥ β2, Ledoit and Wolf showed ([11], proof of Lemma 3.4
page 401, lines from -12 to -6) that

−max
(
|β̄2

n − β2|, |δ̂2n − δ2|
)
≤ β̂2

n − β2 ≤ |β̄2
n − β2|.

From this we deduce

|β̂2
n − β2| ≤ max

{
max

(
|β̄2

n − β2|, |δ̂2n − δ2|
)
, |β̄2

n − β2|
}

≤ max
(
|β̄2

n − β2|, |δ̂2n − δ2|
)
.

Controlling |β̄2
n−β2| leads to a control for |δ̂2n−δ2| and |β̂2

n−β2|. By the same arguments
as in [11] (proof of Lemma 3.4, page 399, equation (A.7)), we have the following expression

β̄2
n − β2 =

1

n
∥S2

n − S2∥2 +

(
1

n2

n∑
i=1

∥ZiZ
′

i − S2∥2 − E

[
1

n2

n∑
i=1

∥ZiZ
′

i − S2∥2
])

.

Now, splitting the probability into two terms, on the one hand, using Markov inequality
on the first term and applying Bienaymé-Tchebychev inequality to the second term, we
get

P
(
|β̄2

n − β2| > ϵ
)
≤ 2

ϵ
E
(
1

n
∥S2

n − S2∥2
)
+

4

ϵ2
Var

(
1

n2

n∑
i=1

∥ZiZ
′

i − S2∥2
)
.

Following Ledoit and Wolf ([11], proof of Lemma 3.1 page 391 line +5), we have

E
(∥∥S2

n − S2
∥∥2) ≤ K1

√
K2.
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Moreover, we have (in the proof of Lemma 3.4, page 401 line +3)

Var

(
1

n2

n∑
i=1

∥∥ZiZ
′
i − S2

∥∥2) ≤ K2
1

√
K2/n.

We obtain

P
(∣∣β̄2

n − β2
∣∣ > ϵ

)
≤ 2

ϵ

K1

√
K2

n
+

4

ϵ2
K2

1

√
K2

n
.

Finally, with P
(∣∣∣δ̂2n − δ2

∣∣∣ > ϵ
)
≤ Cδ2

nϵ2 and

P
(∣∣∣β̂2

n − β2
∣∣∣ > ϵ

)
≤ P

(∣∣β̄2
n − β2

∣∣ > ϵ
)
+ P

(∣∣∣δ̂2n − δ2
∣∣∣ > ϵ

)
,

we obtain

P
(∣∣∣β̂2

n − β2
∣∣∣ > ϵ

)
≤ 1

nϵ2

(
4K2

1

√
K2 + Cδ2 + 2K1

√
K2 ϵ

)
≤

Cβ2(ϵ)

nϵ2
.

Remark that Cβ2(ϵ) tends to 4K2
1

√
K2 + Cδ2 when ϵ tends to 0.

Consider α̂2
n and α2.

Since we have α̂2
n = δ̂2n − β̂2

n and α2 + β2 = δ2, one can easily see that α̂2
n − α2 =

δ̂2n − β̂2
n − δ2 + β2. For all ϵ > 0, we get

P
(∣∣α̂2

n − α2
∣∣ > ϵ

)
≤ P

(∣∣∣δ̂2n − δ2
∣∣∣ > ϵ

2

)
+ P

(∣∣∣β̂2
n − β2

∣∣∣ > ϵ

2

)
≤ 22Cδ2

nϵ2
+

22Cβ2 (ϵ/2)

nϵ2

≤ 1

nϵ2

(
23Cδ2 + 24K2

1

√
K2 + 22K1

√
K2 ϵ

)
≤ Cα2(ϵ)

nϵ2
.

Remark that Cα2(ϵ) tends to 23Cδ2 + 24K2
1

√
K2 when ϵ tends to 0.

In the next lemma 4.6, we control the proximity between 1/ρ̂∗n and 1/ρ∗, that we
denote gn (ϵ) and show that it is of order O (1/n). For this, we first apply product lemma

4.4 to β̂2
n and σ̂2

n. Then, we apply the inverse lemma 4.3 to β̂2
nσ̂

2
n. Finally, we use another

time product lemma 4.4 applied to α̂2
n and 1/β̂2

nσ̂
2
n.

Lemma 4.6. Proximity between 1/ρ∗ and 1/ρ̂∗n
For any ϵ > 0, we have

gn (ϵ) = P
(∣∣∣∣ 1ρ̂∗n − 1

ρ∗

∣∣∣∣ > ϵ

)
≤ G(ϵ)

nϵ2
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with

G(ϵ) = C3;1/β2σ2 (ϵ)
(
2α2 + ϵβ2σ2

)2
+

22Cα2(ϵ)

β4σ4

and

C3;1/β2σ2(ϵ) =

[
K

1/2
2

(
2σ2β2 + ϵ

)2
β8σ12

+
22Cβ2 (ϵ)

β8σ4

](
1 +

(
β2σ2ϵ

)2/5)5
,

with Cβ2 and Cα2 defined in lemma 4.5.

Remark : the function C3;1/β2σ2(ϵ) may be clearly bounded by a polynomial of degree
4 in ϵ. As a consequence, the function G(ϵ) may be bounded by a polynomial of degree
6.

Proof of Lemma 4.6. We apply the product lemma 4.4 to obtain a control for β̂2
nσ̂

2
n

thanks to lemma 4.5 which gives us some control of σ̂2
n and β̂2

n. For all ϵ > 0, one gets

P
(∣∣∣β̂2

nσ̂
2
n − β2σ2

∣∣∣ > ϵ
)
≤

C4;β2σ2(ϵ)

nϵ2
, (19)

with

C4;σ2β2 (ϵ) = K
1/2
2

(
2σ2β2 + ϵ

σ2

)2

+ Cβ2 (ϵ)
(
2σ2
)2

. (20)

We now apply the inverse lemma 4.3 with inequality (19) and obtain a control of 1/β̂2
nσ̂

2
n.

That is, for all ϵ > 0, we have

P

(∣∣∣∣∣ 1

β̂2
nσ̂

2
n

− 1

β2σ2

∣∣∣∣∣ > ϵ

)
≤

C3;1/β2σ2(ϵ)

nϵ2
,

with C3;1/β2σ2 defined by

C3;1/β2σ2 (ϵ) =
C4;β2σ2 (ϵ)

β8σ8

(
1 +

(
β2σ2ϵ

)2/5)5
.

Applying the product lemma 4.4 with u = 1/(β2σ2) and v = α2, we obtain

C4;1/ρ∗(ϵ) = C3;1/β2σ2 (ϵ)
(
2α2 + ϵβ2σ2

)2
+ Cα2(ϵ)

22

β4σ4
.

Remark that C4;1/ρ∗ tends to

24α4K
1/2
2

β4σ8
+

26α4
(
22K2

1

√
K2 + Cδ2

)
β8σ4

+
25
(
2K2

1

√
K2 + Cδ2

)
β4σ4

when ϵ tends to 0.
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Proof of theorem 3.2.
Recall that â∗n = 1 + K3

ρ̂∗
n

and a∗ = 1 + K3

ρ∗ . For any u > 2n, we have

P
(
nZ̄ ′

nΣ̂
∗−2
n Z̄n ≥ u (1 + â∗n + 2ϵ)

)
≤ P

(
nZ̄ ′

nΣ̂
∗−2
n Z̄n ≥ u (1 + a∗ + ϵ)

)
+ P (|ân − a∗| ≥ ϵ)

≤ (I) + (II). (21)

We start by establishing a control for (I). Define ∆n = nZ̄ ′
n

(
Σ̂∗−2

n − Σ∗−2
n

)
Z̄n, then we

have

(I) = P
(
nZ̄ ′

nΣ
∗−2
n Z̄n +∆n ≥ u (1 + a∗ + ϵ)

)
.

Since u > 2n > n, we have

(I) ≤ P
(
nZ̄ ′

nΣ
∗−2
n Z̄n +∆n ≥ u (1 + a∗ + ϵ) , |∆n| ≤ ϵn

)
+ P (|∆n| > ϵn)

≤ P
(
nZ̄ ′

nΣ
∗−2
n Z̄n ≥ u (1 + a∗ + ϵ)− ϵn

)
+ P (|∆n| > ϵn)

≤ P
(
nZ̄ ′

nΣ
∗−2
n Z̄n ≥ u (1 + a∗)

)
+ P (|∆n| > ϵn) . (22)

Theorem 2.3 gives us an exponential bound controlling the first term of the right hand
of the inequality when a = a∗ and u > 2n.
Now use the following matrix factorisation A−1 − B−1 = A−1 (B −A)B−1 to control
the second term in the right hand with A = Σ̂∗2

n and B = Σ∗2
n . It is easy to see that

B −A = (ρ∗ − ρ̂∗n) Iq, then we obtain

∆n = Tr(∆n)

= Tr
(
nZ̄ ′

n

(
Σ̂∗−2

n − Σ∗−2
n

)
Z̄n

)
= n (ρ∗ − ρ̂∗n)Tr

(
Z̄ ′
nΣ̂

∗−2
n Σ∗−2

n Z̄n

)
.

Recall that

Σ∗2
n = S2

n + ρ∗Iq = O′
nΛ

2
nOn + ρ∗Iq = O′

n

(
Λ2
n + ρ∗Iq

)
On.

then

Σ∗−2
n = O′

n



1
λ1+ρ∗

⧹ 0
1

λn+ρ∗
1
ρ∗

0 ⧹
1
ρ∗


On.
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Using the same rotation matrix On, we obtain Σ̂∗−2
n Σ∗−2

n = O′
nDOn, with

D =



1
(λ1+ρ∗)(λ1+ρ̂∗

n)

⧹ 0
1

(λn+ρ∗)(λn+ρ̂∗
n)

1
ρ∗ρ̂∗

n

0 ⧹
1

ρ∗ρ̂∗
n


.

It follows that

∆n = n (ρ∗ − ρ̂∗n)Tr
(
Z̄ ′
nO

′
nD

1
2D

1
2OnZ̄n

)
= (ρ∗ − ρ̂∗n)Tr

((
D

1
2n

1
2OnZ̄n

)′ (
D

1
2n

1
2OnZ̄n

))
= (ρ∗ − ρ̂∗n)

∥∥∥D 1
2n

1
2 Ȳn

∥∥∥2
2
.

Since, for any x in Rq, ∥D 1
2x∥22 ≤ 1

ρ∗ρ̂∗
n
∥x∥22, and because we have ∥x∥22 = q∥x∥2, we get

|∆n| ≤ |ρ∗ − ρ̂∗n|
ρ∗ρ̂∗n

∥∥∥n 1
2 Ȳn

∥∥∥2
2

≤
∣∣∣∣ 1ρ∗ − 1

ρ̂∗n

∣∣∣∣ q ∥∥∥n 1
2 Ȳn

∥∥∥2 .
Lemma 4.6 gives a control of the first term on the right-hand side of this inequality so
that it is sufficient to control the second term. Write

∥∥∥n 1
2 Ȳn

∥∥∥2 =
1

qn

q∑
j=1

(
n∑

i=1

Yi,j

)2

=
1

qn

q∑
j=1

n∑
i=1

Y 2
i,j +

1

qn

q∑
j=1

n∑
i=1

n∑
i′=1
i′ ̸=i

Yi,jYi′,j

= I1 + I2 (23)

Since E ( I1) = E
(

1
qn

∑q
j=1

∑n
i=1 Y

2
i,j

)
= σ2, use Bienaymé-Tchebychev inequality and
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the independence of the Yi’s to get

P

 1

qn

q∑
j=1

n∑
i=1

Y 2
i,j − σ2 >

ϵ

2

 ≤ P

∣∣∣∣∣∣ 1qn
q∑

j=1

n∑
i=1

Y 2
i,j − σ2

∣∣∣∣∣∣ > ϵ

2


≤ 4

ϵ2
Var

 1

qn

q∑
j=1

n∑
i=1

Y 2
i,j


≤ 4

ϵ2
1

nq2
E


 q∑

j=1

Y 2
1,j

2
 . (24)

Then, by hypothesis (A2), we have E
(

1
q

∑q
j=1 Y

4
1,j

)
≤

√
K2. Then, by Cauchy-Schwartz

inequality, we obtain

1

nq2
E


 q∑

j=1

Y 2
1,j

2
 ≤ 1

nq
E

1

q

q∑
j=1

Y 4
1,j

+
1

nq2

q∑
j=1

q∑
k=1
k ̸=j

E
(
Y 2
1,jY

2
1,k

)

≤ 1

nq

√
K2 +

1

nq2

q∑
j=1

q∑
k=1
k ̸=j

√
E
(
Y 4
1,j

)√
E
(
Y 4
1,k

)

≤ 1

nq

√
K2 +

1

n

1

q

q∑
j=1

√
E
(
Y 4
1,j

)2

≤ 1

nq

√
K2 +

1

n
E

1

q

q∑
j=1

Y 4
1,j


≤ 1

n

√
K2

(
1

q
+ 1

)
. (25)

Finally, combining inequalities (24, 25), we get the following control for I1

P
(
I1 − E(I1) >

η

2

)
≤ 4

η2
1

n

√
K2

(
1

q
+ 1

)
. (26)

Now, we focus on I2. Using the independence between the observations Yi’s, we have

E (I2) = E

 1

qn

q∑
j=1

n∑
i=1

n∑
i′=1
i′ ̸=i

Yi,jYi′,j

 = 0.
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By Bienaymé-Tchebychev inequality, we have

P
(
I2 >

η

2

)
≤ 4

η2
E


1

q

q∑
j=1

1

n

n∑
i=1

n∑
i′=1
i′ ̸=i

Yi,jYi′,j


2 . (27)

Furthermore, since 1
n = (n−1)2

4

(
2

n(n−1)

)2
, we can express the expectation above as the

expectation of a U-statistic

E


1

q

q∑
j=1

1

n

n∑
i=1

n∑
i′=1
i′ ̸=i

Yi,jYi′,j


2= (n− 1)

2

4
E


 2

n(n− 1)

n∑
i=1

n∑
i′=1
i′ ̸=i

1

q

q∑
j=1

Yi,jYi′,j


2.

More precisely, this is a U-statistic of degree 2 with kernel w (Yi, Y
′
i ) =

1
q

∑q
j=1 Yi,jYi′,j ,

with E [w (Yi, Y
′
i )] = 0 and degenerated gradients

E [w (Yi, Yi′) | Yi] = 0 and E [w (Yi, Yi′) | Yi′ ] = 0,

where E(Z|Y ) denotes the expectation of Z conditionally to Y. Using the expression of
the variance of this U-statistic as given in Lee (2019) [13], it follows that

E


1

q

q∑
j=1

1

n

n∑
i=1

n∑
i′=1
i′ ̸=i

Yi,jYi′,j


2 =

(n− 1)
2

4

1
n(n−1)

2

(
n− 2

0

)
Var (w (Yi, Yi′))

=
n− 1

2n
E


1

q

q∑
j=1

Y1,jY2,j

2
 . (28)

Now, we have by independence

E


1

q

q∑
j=1

Y1,jY2,j

2
 = E

 1

q2

q∑
j=1

q∑
k=1

Y1,jY2,jY1,kY2,k


=

1

q2

q∑
j=1

q∑
k=1

[E (Y1,jY1,k)]
2
.

Recall that E [Y1,jY1,k] = 0 if j ̸= k. By using Hölder inequalities repetitively and by

hypothesis (A2), we have 1
q

∑q
j=1

[
E
(
Y 2
1,j

)]2 ≤
(

1
q

∑q
j=1 E

(
Y 8
1,j

)) 1
2 ≤ K

1
2
2 , yielding

E


1

q

q∑
j=1

Y1,jY2,j

2
 ≤ 1

q

√
K2. (29)
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Finally, combining equations (27,28) and (29), we obtain a control for I2 as follows

P
(
I2 >

η

2

)
= P

 1

qn

q∑
j=1

n∑
i=1

n∑
i′=1
i′ ̸=i

Yi,jYi′,j >
η

2


≤ 1

η2
2(n− 1)

qn

√
K2. (30)

Finally, assumption (A1) implies

P (|∆n| > ϵn) = P
(
q

∣∣∣∣ 1ρ̂∗n − 1

ρ∗

∣∣∣∣ ∥∥∥n1/2Ȳn

∥∥∥2 > ϵn

)
≤ P

(∥∥∥n 1
2 Ȳn

∥∥∥2 ∣∣∣∣ 1ρ̂∗n − 1

ρ∗

∣∣∣∣ > ϵ

K1

)
≤ P

((∥∥∥n 1
2 Ȳn

∥∥∥2 − σ2

) ∣∣∣∣ 1ρ̂∗n − 1

ρ∗

∣∣∣∣ > ϵ

2K1

)
+P
(∣∣∣∣ 1ρ̂∗n − 1

ρ∗

∣∣∣∣ > ϵ

2σ2K1

)
.

Using the fact that P(AB > ϵ) ≤ P(A >
√
ϵ) + P(B >

√
ϵ), and the definition of the

function gn in lemma 4.6, we have

P (|∆n| > ϵn) ≤ P
(∥∥∥n 1

2 Ȳn

∥∥∥2 − σ2 >

√
ϵ

2K1

)
+ gn

(√
ϵ

2K1

)
+ gn

(
ϵ

2σ2K1

)
≤ P

(
I1 − σ2 >

1

2

√
ϵ

2K1

)
) + P

(
I2 >

1

2

√
ϵ

2K1

)
+gn

(√
ϵ

2K1

)
+ gn

(
ϵ

2σ2K1

)
.

Therefore, by inequalities (26) and (30), considering η =
√

ϵ
2K1

, we get

P (|∆n| > ϵn) ≤ 4(√
ϵ

2K1

)2 ×
[√

K2

n

(
1

q
+ 1

)
+

1

2

n− 1

n

√
K2

q

]

+gn

(√
ϵ

2K1

)
+ gn

(
ϵ

2σ2K1

)
≤ 4K1

√
K2

ϵn

(
2 +

1

q
+K1

)
+gn

(√
ϵ

2K1

)
+ gn

(
ϵ

2σ2K1

)
. (31)
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We now complete the proof of the theorem by handling the term (II). By lemma 4.6, we
get

P (|ân − a∗| > ϵ) = P
(∣∣∣∣ 1ρ̂∗n − 1

ρ∗

∣∣∣∣ > ϵ

K3

)
= gn

(
ϵ

K3

)
. (32)

With inequalities (21), (22), (31), and (32), and using the expression of G to bound gn
given in lemma 4.6, we finally obtain

P
(
nZ̄ ′

nΣ̂
∗−2
n Z̄n ≥ u (1 + â∗n + 2ϵ)

)
≤ P

(
nZ̄ ′

nΣ
∗−2
n Z̄n ≥ u (1 + a∗)

)
+
4K1

√
K2

ϵn

(
2 +

1

q
+K1

)
+ gn

(√
ϵ

2K1

)
+ gn

(
ϵ

2σ2K1

)
+ gn

(
ϵ

K3

)
≤ 2e3

9

(
u− n

2

)n
2 e−

u−n
2

Γ
(
n
2 + 1

) + 1

n

C (ϵ)

ϵ
, (33)

where C(ϵ) is independent of n such that

C (ϵ) = 4K1

√
K2

(
2 +

1

q
+K1

)
+ 2K1G

(√
ϵ

2K1

)
+
4K2

1σ
4

ϵ
G

(
ϵ

2σ2K1

)
+

K2
3

ϵ
G

(
ϵ

K3

)
.
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